ФИЗИКА ТВЕРДОГО ТЕЛА

УДК 539.26:518.5

ДВОЙНИКОВАНИЕ КРИСТАЛЛОВ МАРТЕНСИТНОЙ ФАЗЫ

А. Г. Хунджуа, А. В. Сорокин, Е. В. Чернов

(кафедра физики твердого тела)

Исследованы кристаллографические особенности двойникования системы мартенситных кристаллов, сформированных в результате фазового превращения из монокристалла исходной фазы. Показано, что в сплавах с эффектом памяти формы двойникование приводит к переходу от одного варианта ориентационного соотношения к другому, кристаллографически эквивалентному.

Мартенситные превращения в металлических сплавах сопровождаются двойнакованием мартенситных кристаллов. В сплавах с эффектом памяти формы механизм запоминания непосредственно связан с двойникованием. Таким образом, двойникование при выделении кристаллов второй фазы является закономерным процессом для широкого круга металлических сплавов и требует детального изучения.

При мартенситных превращениях решетки исходной фазы и мартенсита связаны строгим ориентационным соотношением, которое описывается матрицей соответствия \widehat{A} , преобразующей координаты произвольного вектора r в двух базисах. Пусть $\mathbf{r} = \sigma_i a_i = \sigma_i ' b_i$, где $\{a_i\}$ и $\{b_i\}$ — базисные векторы кристаллических решеток исходной фазы и мартенсита. Тогда вектор-столбцы σ и σ' связаны соотношениями

$$\sigma = \hat{A}\sigma'; \quad \sigma' = \hat{A}^{-1}\sigma. \tag{1}$$

В зависимости от сингонии кристалла исходной фазы ориентационное соотношение допускает реализацию нескольких кристаллографически эквивалентных вариантов взаимной ориентации решеток, каждый из которых вносит свой вклад в дифракционную картину. В случае кубической симметрии кристалла исходной фазы таких вариантов может быть не более 24, каждый из которых описывается соответствующей матрицей \widehat{A}_i . Используя операторы симметрии кристаллической решетки исходной фазы \widehat{S}_i , можно получить матрицы \widehat{A}_i , исходя из какой-либо одной:

$$\widehat{A}_i = \widehat{S}_i \widehat{A}$$
.

Для кубической решетки исходной фазы 24 оператора симметрии можно получить, комбинируя три оператора поворота на 90° вокруг базисных векторов

_	10	0	~	001		0	-10	Į
$\hat{X} = $	00	1	$\hat{Y} =$	010	: Ż=	= 1	0.0	
	01	0		-100	ŕ]0	01	ļ

следующим образом:

$$\begin{split} \widehat{S}_{1} &= \widehat{E}; \quad \widehat{S}_{2} = \widehat{X}^{2}; \quad \widehat{S}_{3} = \widehat{Y}^{2}; \quad \widehat{S}_{4} = \widehat{Z}^{2}; \\ \widehat{S}_{5-8} &= \widehat{X}\widehat{S}_{1-4}; \quad \widehat{S}_{9-12} = \widehat{Y}\widehat{S}_{1-4}; \quad \widehat{S}_{13-16} = \widehat{Z}\widehat{S}_{1-4}; \\ \widehat{S}_{17-20} &= \widehat{X}\widehat{S}_{9-12}; \quad \widehat{S}_{21-24} = \widehat{X}\widehat{S}_{13-16}. \end{split}$$

$$(2)$$

Если двойникование мартенсита не приводит к кристаллографически эквивалентному варианту ориентационного соотношения, на дифракционных картинах в результате двойникования появится дополнительная система рефлексов. При моделировании дифракционных картин двойникование мартенсита может быть учтено путем видоизменения формул [1] посредством замены матрицы \widehat{A} на матрицу \widehat{AD} , где \widehat{D} — матрица двойникования, конкретный вид которой определяется плоскостью двойникования и решетки мартенсита. Расчет матрицы двойникования системы уравнений, связывающих индексы трех некомпланарных векторов в решетках мартенсита и двойника. Операцию двойникования формально можно описать поворотом на 180° вокруг нормали к плоскости (H, K, L), имеющий индексы

 $[H_n, K_n, L_n]$, остается неизменным, а координаты векторов, лежащих в плоскости двойникования, меняют свой знак на противоположный. Вектор нормали к плоскости двойникования $\sigma_n = \{H_n, K_n, L_n\} = \{H, K, L\}\widehat{g^{-1}},$ где \widehat{g} — фундаментальный метрический тензор [2]. В качестве двух векторов, лежащих в плоскости двойникования, можно взять векторы $\sigma_1 = \{-K, H, 0\}$ и $\sigma_2 = \{0, -L, K\}$. Матрицу D находим из решения системы уравнений

$$\begin{split} \widetilde{\sigma}_{n} &= D\widetilde{\sigma}_{n}; \quad -\widetilde{\sigma}_{1} = \widehat{D}\widetilde{\sigma}_{1}; \quad -\widetilde{\sigma}_{2} = \widehat{D}\widetilde{\sigma}_{2}; \\ \widehat{D} &= \frac{1}{HH_{n} + KK_{n} + LL_{n}} \begin{vmatrix} HH_{n} - KK_{n} - LL_{n} & 2H_{n}K & 2H_{n}L \\ 2HK_{n} & KK_{n} - HH_{n} - LL_{n} & 2K_{n}L \\ 2HL_{n} & 2KL_{n} & LL_{n} - HH_{n} - KK_{n} \end{vmatrix} , \end{split}$$

$$(3)$$

лри этом det $\widehat{D=1}$, $\widehat{D^2=E}$.

Случай, когда двойникование приводит к кристаллографически эквивалентному варианту ориентационного соотношения, может быть описан матричными уравнениями вида $\widehat{S(A)} = \widehat{AD}$. Тогда. если матрица двойникования D (3) совпадает хотя бы с одним из решений уравнения

$$\widehat{D}_i = \widehat{A}^{-1} \widehat{S}_i \widehat{A},\tag{4}$$

то двойникование приводит к эквивалентному варианту ориентационного соотношения и рентгенографически такие двойники не выявляются. Среди матриц $\widehat{D_i}$ (4) не все являются матрицами двойникования. Выявление матриц, описывающих двойникование, сводится к решению задачи на собственные значения: если матрица $\widehat{D_i}$ имеет собственные значения $\lambda_1 = 1$, $\lambda_2 = \lambda_3 = -1$, она описывает двойникование по плоскости, нормаль к которой определяется собственным вектором, соответствующим λ_1 .

Собственные значения матрицы D_i есть корни уравнения вида

$$\lambda^3 - J_1 \lambda^2 + J_2 \lambda - J_3 = 0, \tag{5}$$

где $J_1 = d_{11} + d_{22} + d_{33} = \operatorname{Tr} \widehat{D}_i$, $J_2 = d_{11}d_{22} + d_{22}d_{33} + d_{11}d_{33} - d_{12}d_{21} - d_{13}d_{31} - d_{23}d_{32}$, $J_3 = \det \widehat{D}_i = 1$, d_{ij} — элементы матрицы \widehat{D}_i . С другой стороны, если матрица \widehat{D}_i является матрицей двойникования, уравнение (5) представимо в виде

 $(\lambda - 1) (\lambda + 1) (\lambda + 1) = 0,$

что накладывает ограничения на коэффициенты: $J_1 = -1$, $J_2 = -1$. Запишем задачу на собственные значения в виде

$$\lambda \sigma' = \widehat{D}_i \sigma' = \widehat{A}^{-1} \widehat{S}_i \widehat{A} \widehat{\sigma}'.$$

Выразим σ' через σ (1), тогда уравнение (6) принимает вид

 $\lambda \sigma = \widehat{S}_i \sigma$,

т. е. собственные значения матрицы \widehat{D}_i совпадают с собственными значениями соответствующего оператора \widehat{S}_i , и матрица \widehat{D}_i является матрицей двойникования, только если оператор \widehat{S}_i имеет собственные значения $\lambda_1 = 1$, $\lambda_{2,3} = -1$. Из группы операторов $\{\widehat{S}_i\}$ (2) этому условию удовлетворяют 9 операторов: $\widehat{S}_2 - \widehat{S}_4$, \widehat{S}_7 , \widehat{S}_8 , \widehat{S}_{10} , \widehat{S}_{12} , \widehat{S}_{14} , \widehat{S}_{15} , собственные векторы которых, соответствующие $\lambda = 1$, определяют нормаль к плоскости двойникования, выраженную в индексах решетки исходной фазы. Собственные векторы операторов $\widehat{S}_2 - \widehat{S}_4$ соответствуют трем плоскостям типа {100}, а остальных шести операторов — плоскостям типа {110}.

Таким образом, если плоскость двойникования кристаллов мартенсита оказывается параллельной одной из перечисленных выше плоскостей кристалла исходной фазы (плоскости симметрии), двойникование приводит к кристаллографически эквивалентному варианту ориентационного соотношения и дополнительные рефлексы от двойников на дифракционных картинах не появляются. Именно такая ситуация имеет место при двойниковании термоупругого мартенсита в сплавах с эффектами памяти формы. Например, в системах Ti—Ni, Ni—Al, Mn—Cu, In—Tl, Cu—Al—Ni [3] мартенситные кристаллы сдвойникованы по плоскостям, параллельным плоскостям {110} кристалла исходной фазы.

(6)

[1] Захарова М. И., Сорокин А. В., Хунджуа А. Г.//Вестн. Моск. ун-та. Физ. Астрон. 1984. 25, № 4. С. 80. [2] Васильев Д. М. Физическая кристаллография. М., 1972. [3] Сплавы с эффектами памяти форм. М., 1990.

Поступила в редакцию 03.12.90

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1991. Т. 32, № 5

УДК 669.866

СТРУКТУРА И МАГНИТОУПРУГИЕ СВОЙСТВА РЕДКОЗЕМЕЛЬНЫХ ФАЗ ЛАВЕСА ТИПА С15

Г. В. Бондарькова, А. С. Илюшин, И. А. Никанорова

(кафедра физики твердого тела)

Представлены результаты теоретического расчета спин-ориентационных магнитных фазовых диаграмм для ряда сечений системы (Tb_{1-x}Ho_x)_{1-y}Dy_yAl₂, температурные и концентрационные зависимости энергии магнитокристаллической анизотропии.

Редкоземельные фазы Лавеса С15 и сплавы на их основе являются перспективными магнитострикционными материалами, уже нашедшими применение в современ-

Рис. 1. Температурные и концентрационные зависимости энергии магнитокристаллической анизотропии W_{ma} (а) и спин-ориентационная магнитная фазовая диаграмма (б) для сплавов системы (Tb_{0,5}Ho_{0,5})_{1-y}Dy_yAl₂

ной технике [1-3]. В качестве основных требований, предъявляемых характеристикам, к их магнитным выделяют в первую очередь два: большую величину магнитострикции λ и малую энергию магнитокристаллической анизотропии Wma. Решение поставленной задачи может быть найдено с помощью синтеза фаз Лавеса типа С15, содержащих три или более редкоземельных компонент. Эмпирический поиск сплавов с оптимальными магнитными характеристиками сопряжен со значительными экспериментальными трудностями, большей части которых можно избежать, если использовать расчетные методы [4]. Из работ [3, 4] известно, что для редкоземельных фаз Лавеса можно вполне корректно провести расчеты на основе теории кристаллического поля для одноионной модели, в которой при ограниченном числе подгоночных параметров удается связать электронные свойства редкоземельных ионов с магнитными и структурными состояниями сплавов с оптимальными магнитострикционными характеристиками. Методика таких численных расчетов подробно изложена в работе [4].

Интерметаллические соединения RAl₂ и многокомпонентные сплавы на их основе, изоструктурные фазам Лавеса типа C15, являются удобными модельными объектами для всесторонних теоретических и экспериментальных исследований. Теоретическое описание обменных магнитных взаимодействий в них сравнительно