Отличие системы (6) от традиционно применяемых разностных схем состоит в вычислении нелинейных членов. Вычисления каждого нелинейного члена несколько громоздки, но итерационный процесс при решении нелинейной системы быстро сходится и позволяет делать достаточно большой шаг т по координате z. По сравнению с известными авторам численными методами система (6) решает «усеченную» систему (1) примерно на 10-15% быстрее. Скорость сходимости разностной схемы, построенной на базе системы (6), к точному решению устанавливает

Теорема 2.

 Π усть в системе (6) $\tau = 0(h^2)$, тогда $\max_{z \in [0, Z]} \{ ||p - E||_{L_2(0, I)}, |q - G|_{L_2(0, I)} \} \le ch.$

Разностная схема (6) является консервативной и устойчивой. Проведенные расчеты показали наличие различий в поведен в поведении солитоноподобных решений в квазисимметричном случае $b_1 \neq b_2$, $b_1 + b_2$ $+d_1=b_2+d_2$ и в полностью симметричной системе (напомним, что в остальных случаях распространяющихся в координатах (x, z) солитонных решений нет).

ЛИТЕРАТУРА

[1] Дианов Е. М., Прохоров А. М.//УФН. 1986. 149. С. 449. [2] Christo-doulides D. N., Joseph R. I.//Phys. Rev. Lett. 1989. 62. Р. 1746. [3] Mills D. L., Trullinger S. E.//Phys. Rev. 1987. 36. Р. 947. [4] Манаков С. А.//ЖЭТФ. 1973. 65, № 8. С. 506. [5] Азимов Б. С., Сухоруков А. П., Трухов Д. В.//Изв. АН СССР, сер. физ. 1987. 52. С. 587. [6] Вгиll, Lange//Expos. Math. 1986. 4. Р. 1127. [7] Леонтьев А. Ф. Ряды экспонент. М., 1976.

Поступила в редакцию 12.07.91

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ. 1991. Т. 32. № 6

АТОМНАЯ И ЯДЕРНАЯ ФИЗИКА

УДК 539.12.01

ОПРЕДЕЛЕНИЕ КОНДЕНСАТОВ КХД ИЗ ПРАВИЛ СУММ НА ОСНОВЕ АНАЛИТИЧЕСКИХ СВОЙСТВ ФОРМФАКТОРА ПИОНА

Д. В. Мещеряков

(кафедра квантовой теории и физики высоких энергий)

На основе аналитических свойств формфактора пиона из правил сумм КХД определены значения глюонного и четырехкваркового конденсатов. Непертурбативная структура формфактора пиона приводит к возрастанию значений конденсатов по сравнению со стандартными.

1. Введение

Со времени появления работы Шифмана, Вайнштейна и Захарова [1] проблеме определения величин конденсатов КХД было уделено большое внимание [2-7]. Тем не менее разброс полученных результатов достаточно велик. В работе [1] для определения с помощью правил сумм параметров р-мезона фактически использовалось приближение нулевой ширины. Недавно нами была получена простая формула для формфактора пиона, хорошо описывающая массу и ширину о-мезона и приводящая к согласующимся с экспериментом значениям среднеквадратичного раднуса пиона и длины рассеяния [8]. Кроме того, это представление пионного формфактора допускает простое выделение ненертурбативного вклада, что является чрезвычайно удобным для использования в правилах сумм КХД.

В связи с этим интересно решить обратную по отношению к решенной в [1] задаче: с помощью известного представления для формфактора пиона определить значения конденсатов КХД, входящих в правые части правил сумм. Этому и посвящена данная работа.

2. Представление чионного формфактора и униформизирующая переменная

Доминирующим вкладом в формфактор пиона $F_{\pi}(t)$ при $|t| \ll \le 10$ ГэВ² является вклад р-мезона [7]. Будем считать, что в $F_{\pi}(t)$ р-мезон характеризуется следующими четырьмя величинами: массой $m_{\rm p}$, шириной $\Gamma_{\rm p}$, длиной рассеяния a_1^{-1} и среднеквадратичным радиусом пиона $\langle r_{\pi}^2 \rangle$. Формфактор $F_{\pi}(t)$ представляет собой граничное значение функции F(t), аналитической в комплексной плоскости t с разрезом $[4m_{\pi}^2, \infty)$:

$$F_{\pi}(t) = \lim_{\varepsilon \to \infty} F(t+i\varepsilon), \ t \in [4m_{\pi}^2, \ \infty).$$

В интервале $4m_{\pi}^2 \ll t < 16m_{\pi}^2$ в условие унитарности дает вклад только двухчастичное состояние. Мы же будем считать двухчастичное условие унитарности выполненным на всем разрезе. Это приближение приводит к простому доказательству наличия у функции F(t) разреза $(-\infty, 0]$ на втором листе ее римановой поверхности. Этот разрез по-является за счет перекрестного канала изовекторной *p*-волновой амплитуды рассеяния [7]. Окончательно: F(t) является мероморфной функцией на четырехлистной римановой поверхности:

$$F(t) = C/[(\omega - \omega_1)(\omega + \omega_1^*)(\omega - \omega_2)(\omega + \omega_2^*)], \qquad (1)$$

где униформизирующая переменная имеет вид

$$\omega(t) = (iq - 1)^{1/2}, \ q = (t/4m_{\pi}^2 - 1)^{1/2}.$$
(2)

В комплексной плоскости ω образом действительной оси Im q=0 являются две гиперболы:

$$v^2 - u^2 = 1, \quad uv = q/2,$$
 (3)

rge $u = \operatorname{Re} \omega$, $v = \operatorname{Im} \omega$.

В приближении нулевой ширины ρ -мезона полюсы ω_1 и — ω_1^* лежат на гиперболе v>0 симметрично относительно оси u=0. Полюсы ω_2 и — ω_2^* также симметричны относительно этой оси и лежат на гиперболе v<0. Требование совпадения вычисленных с помощью (1)— (2) значений Γ_{ρ} , a_1^1 и $\langle r_{\pi}^2 \rangle$ с учетом условия нормировки, следующего из определения электрического заряда пиона $F_{\pi}(t)|_{t=0}=1$, с экспериментальными значениями приводит к фиксации параметров задачи [8]. Здесь мы используем значения параметров ω_1 и ω_2 , полученные в предположении о 4%-й точности четырех экспериментальных характеристик ρ -мезона:

$$\omega_1 = u_1 + iv_1; \ u_1 = 0.96 \pm 0.02, \ v_1 = 1.28 \pm 0.03, \omega_2 = u_2 + iv_2; \ u_2 = 1.63 \pm 0.03, \ v_2 = 1.53 \pm 0.05.$$
(4)

45

При этом полюсы ω_1 и — ω_1 незначительно сдвигаются с гиперболы вследствие малости отношения Γ_p/m_p , так что это можно интерпретировать как пертурбативный эффект. Полюсы ω_2 и — ω_2 значительно удаляются от гиперболы, и их сдвиг по отношению к ней естественно рассматривать как непертурбативный эффект.

3. Выделение непертурбативного вклада в правую часть правил сумм

Для определения конденсатов КХД мы используем известные правила сумм [1]

$$\frac{2}{3}M^{-2}\int ds \exp\left\{-\frac{s}{M^2}\right\}R^{I=1}(s) = \\ = \left[1 + \frac{\alpha_s(M)}{\pi} - \frac{2\pi^2 f_\pi^2 m_\pi^2}{M^4} + \frac{\pi^2}{3}\frac{C_1}{M^4} - \frac{896\pi^3}{81}\frac{C_2}{M^6}\right],$$
(5a)
$$\frac{2}{6}M^{-4}\int ds^2 \exp\left\{-\frac{s}{M^2}\right\}R^{I=1}(s) = \\ = \left[1 + \frac{\alpha_s(M)}{\pi} + \frac{2\pi^2 f_\pi^2 m_\pi^2}{M^4} - \frac{\pi^2}{3}\frac{C_1}{M^4} + \frac{2\cdot 896\pi^3}{81}\frac{C_2}{M^6}\right],$$
(55)

где

$$R^{I=1} = \frac{\sigma (e^+e^- \to aдроны, I = 1)^{-1}}{\sigma (e^+e^- \to \mu^+\mu^-)},$$
$$C_{1!} = \left\langle \frac{\alpha}{\pi} GG \right\rangle - глюонный конденсат,$$
$$C_{2} = \langle \overline{\alpha qq} \rangle^2 - четырехкварковый конденсат.$$

Ограничиваясь, как и в [1], случаем

$$\sigma(e^+e^- \rightarrow \text{адроны}, I = 1) = \sigma(e^+e^- \rightarrow \pi^+\pi^-),$$

получаем

$$R^{I=1}(s) = \frac{1}{4} \left[(s - 4m_{\pi}^2)/s \right]^{3/2} |F_{\pi}(s)|^2.$$
(6)

Подставляя (6) в (5), воспользуемся тем, что полюсы $\omega_1, -\omega_1$ сдвигаются с гиперболы Im $\omega > 0$ незначительно. Интегрирование по физической области превращается в плоскости ω в интегрирование по положительной ветви гиперболы Im $\omega > 0$. При интегрировании по гиперболе линейные по отклонению полюса ω_1 от гиперболы члены в силу соотношения vdv-udn=0 исчезают, что дает возможность использовать известное представление δ -функции [9]

$$\lim_{a \to 0} \frac{a}{a^2 + x^2} = \pi \delta(x).$$
⁽⁷⁾

В результате получаем приближенные аналитические выражения для интегралов в левых частях правил сумм

$$\frac{2}{3}M^{-2}\int ds \exp\left\{-\frac{s}{M^2}\right\}R^{I=1}(s) = \Phi(C, u_1, v_1, u_2, v_2),$$
(8a)

$$\frac{2}{6}M^{-4}\int ds^2 \exp\left\{-\frac{s^2}{M^2}\right\}R^{l=1}(s) = 4m_\pi^2(2u_1^2+1)^2\Phi(C, u_i, v_1, u_2, v_2),$$
(86)

тде

$$\Phi = \frac{16m_{\pi}^2 C^2}{\delta} \cdot \frac{[4u_1^2 (u_1^2 + 1)]^{3/2}}{(1 + 2u_1^2)^2} \cdot \exp\left\{-\frac{4m_{\pi}^2}{M^2} (1 + 2u_1^2)\right\} / [4u_1^2 [(u_1 - u_2)^2 + (v_1 - v_2)^2]] + (v_1 - v_2)^2] [(u_1 + u_2)^2 + (v_1 - v_2)^2]],$$

а $\delta = (du^2 + dv^2)^{1/2}$ — расстояние от полюса ω_1 до ближайшей к нему точки на гиперболе. Изложенная процедура фактически является выделением нопертурбативного вклада р-мезона в правую часть правил сумм (5).

4. Определение конденсатов КХД

Используя в выражениях (8) значения параметров (4), можно определить величины глюонного и четырехкваркового конденсатов КХД, входящих в данном подходе в правые части правил сумм (5) в качестве свободных параметров. При этом, следуя [1], учтем вклад континуума следующим образом:

$$R_{\text{cont}}^{I=1}(s) = \frac{3}{2} \left(1 + \frac{\alpha_s(s)}{\pi} \right) \cdot \theta(s - s_0).$$
⁽⁹⁾

В [1] использовалось значение $s_0=1,5$ ГэВ². Мы же будем считать s_0 еще одним свободным параметром, подлежащим определению из правил сумм. Свободные параметры C_1 , C_2 и s_0 мы определяем, требуя наилучшего совпадения функций (8а) и (5а) при 0,4 ГэВ² $\ll M^2 \ll 1$ ГэВ² и наилучшего совпадения функций (86) и (56) при 0,5 ГэВ² $\ll M^2 \ll 0,7$ ГэВ² [1]. Эти расчеты были проделаны с помощью программы минимизации χ^2 FUMILI, разработанной в ОИЯИ. В результате для конденсатов ҚХД были получены следующие значения:

$$\left\langle \frac{\alpha}{\pi} GG \right\rangle = (8,3 \pm 1,4) \cdot 10^{-2} \, \Gamma \mathfrak{s} \mathfrak{B}^4,$$
$$\alpha_s \, \langle \overline{q}q \rangle^2 = (2,7 \pm 0,4) \cdot 10^{-4} \, \Gamma \mathfrak{s} \mathfrak{B}^6.$$

Параметр s₀ удалось определить с меньшей точностью, и он оказался равным

 $s_0 = 3,75 \pm 2,25 \ \Gamma \Rightarrow B^2$.

Полученное значение глюонного конденсата примерно в 7 раз превосходит «стандартное значение», приведенное в [1], а значение четырехкваркового конденсата практически совпадает со «стандартным значением» из [1]. Этот факт можно рассматривать как указание на то, что приведенная в [1] оценка четырехкваркового конденсата базируется на более фундаментальных и моделенезависимых предположениях, чем оценка глюонного конденсата. Ошибка параметра s_0 приводит к тому, что большинство встречающихся в литературе оценок [1, 2] укладывается в этот интервал.

5. Заключение

Использование более точной, чем в [1], модели для $R^{I=1}(s)$ привело к увеличению значений конденсатов КХД размерностей 4 и 6. Этот результат качественно согласуется с результатом [2], а оценка глюонного конденсата согласуется и количественно. Найденное значение глюонного конденсата согласуется также со значением, полученным в рамках модели с бесконечным числом векторных мезонов [7].

Уточнения значений рассмотренных конденсатов с помощью аналогичного метода можно добиться учетом вклада радиальных возбуждений р-мезона. Следующим шагом на этом пути является учет р'-мезона, что, возможно, позволит включить в рассмотрение конденсаты более высоких размерностей.

В заключение автор считает своим приятным долгом поблагодарить Г. В. Мещерякова за плодотворные консультации по численным расчетам.

ЛИТЕРАТУРА

[1] Shifman M. A., Vainstein A. I., Zakharov V. I.//Nucl. Phys. 1979. B147. P. 385; 448. [2] Bertimann R. A., Dominguez C. A., Loewe M., Perrottet M., Rafael E. de//Z. Phys. 1988. C39. P. 231. [3] Gogokhia V. Sh., Kluge Gy, Magradze B. A.//KFKI Preprint. 1990. N 09A. [4] Bordes J., Gimenez V., Penarrocha J. A.//Phys. Lett. 1989. 223B. P. 252. [5] Arbuzov B. A., Boos E. E., Turashvili K. Sh.//Z. Phys. 1986. C30. P. 287. [6] Das A., Mathur S., Panighari P.//Phys. Rev. 1987. D35. P. 2178. [7] Гешкенбейл Б. Л.// //Ядерная физика. 1990. 51, № 4. С. 1121. [8] Быковский Б. В., Мещеряков В. А., Мещеряков Д. В.//Там же. 51, № 3. С. 783. [9] Корн Г., Корн Т. Справочник по математике. М., 1977.

Поступила в редакцию 16.05.91

ВЕСТН. МОСК. УН-ТА, СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1991. Т. 32, № 6

УДК 539.172.3

МЕТОД РЕДУКЦИИ В ЗАДАЧЕ ПОВЫШЕНИЯ РАЗРЕШЕНИЯ ФОТОЯДЕРНЫХ ЭКСПЕРИМЕНТОВ

Н. Г. Ефимкин, Б. С. Ишханов, Ю. П. Пытьев

(кафедра общей ядерной физики)

Применение метода редукции без априорной информации, инвариантного относительно ядерных моделей, позволяет повысить энергетическое разрешение экспериментальных данных вплоть до величины, равной 1—2 шатам по энергии, с которыми эти данные измеряются. Это энергетическое разрешение, которое может превышать экспериментально осуществимое в несколько раз, соответствует полной шириме на нолувысоте синтезированной в процессе решения задачи новой аппаратной функции, по форме близкой к гауссовой.

1. Введение

В большинстве ядерных спектрометрических экспериментов согласно принятой модели взаимодействия излучений с веществом непосредственно измеряемая величина представляет собой результат воздействия линейного интегрального оператора на сечение или интенсивность процесса î, интересующие исследователя. Эта экспериментальная величина, которую часто называют экспериментальным выходом, в даль-