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INVARIANT REGULARIZATION OF INFRARED DIVERGENCES 
IN THE BACKGROUND FIELD METHOD FOR TWO-DIMENSIONAL 

NONLINEAR THEORIES 

V. V. Belokurov and V. E. Tarasov 

Various methods for separating the ultraviolet and infrared divergences in two­
dimensional nonlinear sigma models are discussed. An infrared regularization 
is proposed that takes into account the ultraviolet renormalization effect in the 
preceding orders and makes it possible to obtain invariant ultraviolet countert­
erms by the background field method. 

The background field method is an effective means for determining quantum corrections in quantum 
field theory (see, e.g., (1] and references therein). Its role is particularly important in nonlinear quantum­
field models having a complex symmetry structure, in particular, in two-dimensional nonlinear sigma mod­
els (TNSMs), which can he regarded as being renormalizable in the generalized sense [2]. In [3, 4] and 
also in [5], a covariant formalism was developed in explicit forrn for determining counterterms within the 
framework of this method in TNSMs, which is used in all subsequent calculations in both the boson and 
supersymmetric versions. 

As is known, the essence of the background field method lies in the following important property. If a 
quantum field <p(z) is split into a classical (background) field <l>(z) and an additional quantum term 1r(z), 
then an ordinary effective action is equal to the generating functional of one-particle-irreducible vacuum 
diagrams in the presence of the background field. In other words, to obtain the generating functional for all 
one-particle-irreducible diagrams it suffices to calculate only the vacuum diagrams (i.e., without the external 
lines corresponding to quantum fields), which have external background fields at their vertices. 

For a TNSM this simple calculation scheme proves insufficient owing to the nonlinear character of the 
field splitting into the classical and the quantum parts. It turns out that in this theory, in order to remove 
all ultraviolet (UV) divergences in higher loops, one must not only add counterterms having the structure of 
action and interpreted as a renormalization of the target-space metric, but also perform a nonmultiplicative 
renormalization of the quantum field [6, 7]. 

The additional terrn to the two-loop counterterm obtained in [7], which corresponds to the renormaliza­
tion of the quantum field, is proportional to the equation of motion and has a divergence of the type of ,-2 

(<is the parameter of dimensional regularization). In the present paper we shall show that allowance for the 
quantum field renormalization is also necessary for a correct separation of infrared (IR) and UV divergences 
in higher orders by adding to the action some invariant terms that regularize the IR divergences. As will be 
seen later, the corresponding contribution has a singularity of the form of e-1 and turns out to be important 
for complete canceling out of noninvariant counterterms. 

The interest in studying the structure of UV divergences in TNSMs is to a great extent due to the 
needs of the string theory (see [8] and references therein), which deals with compact world surfaces and 
is free of IR divergences. However, since the UV counterterms (related to the interaction locality) are 
independent of global properties of the world surfaces [9], it is more convenient to perform real calculations 
of the counterterms assuming that the two-dimensional space is fiat and infinite [10, 11]. But then one has 
to deal with the problem of IR divergences characteristic of two-dimensional theories on a fiat infinite space. 

Indeed, from the expression for the Fourier transform of an ordinary massless propagator l/k2 in the 
d-dimensional (Euclidean) space 

F. [..!.] = (2 )-•jd•k exp{i.l:z} •1:2- .. J:2-iQ (1) 

it follows that the propagator diverges in the coordinate representation for d = 2. 
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A more rigorous analysis of the problem [12-14] reveals the reason for this difficulty. The matter is that 
the massless propagator satisfying the equation 

(2) 

is not determined uniquely but accurate to an arbitrary constant C: 

(3) 

or, in the coordinate representation, 

(4) 

For d > 2 this constant is fixed ( C = 0) by the requirement that the propagator should decrease at large 
distances, while for d = 2 there exists arbitrariness that can be used to determine a propagator free of IR 
divergences. As a propagator of this kind one can take, for instance, the expression D(.,)-D(O). 

This subtraction of IR divergences is the simplest case of the application of the so-called R' -operation 
[15, 16]. which supplements the standard R-operation [17] with the corresponding subtraction of IR diver­
gences. In TNSMs, in higher orders of perturbation theory there is an overlap of UV and IR divergences, 
therefore in the case under consideration the R' -operation is carried out in a more complicated manner than 
a simple subtraction of a singularity from a free propagator [18]. 

However, in the majority of worlcs devoted to the calculation of P-functions in different versions of 
TNSM, particularly in low orders of perturbation theory, use is made of another method for eliminating 
IR divergences. Here we make a brief remark. Of course, the introduction of dimensional regularization 
(d = 2 - 2&) regularizes not only the UV divergences but also the IR divergences. However, both of 
them manifest themselves in a similar way, namely ss poles with tespect to t. Therefore to separate these 
divergences a massless term is added to the action (see below). 

To make the subsequent formulas more illustrative, we confine ourselves to a simple version of TNSM, 
namely we consider a boson model with the action 

11 . . S = "2 dzG;;(<p)lJ•<p'lJ"'P', (5) 

whose field manifold is a locally symmetric space (R;;1o1;n = 0). All the conclusions will apply to more 
complex cases as well. The massive term of the field <p' ( ") has the form 

(6) 

The indicated term added to the action is of course of auxiliary character, and, after the UV counterterms 
are calculated, the number m should .be equated to zero. 

In the calculation by the background field method the action is expanded in powers of the quantum 
field whose role in TNSMs is played by the vector e(z) tangential to the geodesic at the point of the field 
manifold with the coordinate~;(.,) [4]. 

The one-loop divergent counterterm obtained from (5) and (6) is equal to 

(7) 

The second term in (7) vanishes form-+ 0 and is not significant in the one-loop approximation. However, it 
makes a contribution to the UV counterterms in the subsequent orders owing to the appearance of integrals 
which behave like m-2 • As a result, after the IR regularization is removed (m-+ 0), the part of the two-loop 
counterterm proportional to 1/t contains, besides the well-known expression 

1 1 Id D R..... ;&•·..i (4.-)2£ 2 z , ..... j Vµ'f' y' (8) 
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1 1 J d R•••R < l ( o. 1 ) n i nµ,,.j 
(4 .. )2e 18 :r < lc'P 'P '"'••; + 3"'"'•"'<!i• vµtp v Y ' 
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(9) 

where "'"'• are the so-called spin connectivity coefficients that are not covariant objects (their origin is dealt 
with in, e, g., [4)). The appearance of noninvariant counterterms indicates that the applied method for 
separating the UV and IR divergences arising in the given order is not quite correct. 

Expression (9) is obtained by using the IR regularization (6), which itself is noninvariant since ip'(:r), 
in contrast to lJ•ip'(:r), is not transformed as a vector on the field manifold. Therefore the noninvariant 
terms in the counterterms are usually neglected under the assumption that if an invariant IR regularization 
is introduced, then no such terms must appear [4]. However, in this case the question of existence of such a 
regularization remains open. 

As will be shown by a direct calculation, to separate the IR and UV divergences in higher orders in 
an invariant manner it is not sufficient to have just an invariant massive term. It is also necessary that the 
regularization of the IR divergences of a given order be carried out after the UV divergences of the preceding 
orders in the massive term are removed. Indeed, one can see, that the choice of the IR regularization in the 
simplest invariant form 

(10) 

(recall that {'(:r) is a vector on the field manifold) results in the appearance of additional noninvariant 
structures in the two-loop counterterm: 

2 J d l ,,.. • n inµ,,.j 
(4.-)2£ "'36"' "'•••"';ovµtp v 't' • (11) 

An analysis of the origin of these terms shows that they arise from diagrams whose momentum integrals 
reduce to products of the form of m 2 1112 and m4 Iila, where 

1 = J d" k (1:2 + m2)-a _ (4.-)-df2(m2)d/2-a r( °' - d/2) 
a - (2.-)d - r(oi) . (12) 

Since 11 has an UV pole 1/ E and 12 and la are singular in the IR limit, the superposition of UV and IR 
divergences takes place here. The indicated terms a.re not canceled out here owing to the fact that no 
complete elimination of UV divergences of the preceding orders has been carried out in the IR-singular parts 
of the diagrams. 

Resorting to the example of the application of the R0 -operation in TNSMs [18] one can draw the 
conclusion that the term regularizing the IR divergences must take into account the renormalization of all 
the UV subdivergences. An expression of this kind is 

(13) 

where expressions renormalized with an accuracy of up to the preceding order are substituted for G~ and 
{}. in every specified order of perturbation theory. In particular, for the IR regularization of the two-loop 
counterterm one should set 

(14) 

(15) 

Direct calculations show that in this case there occurs complete canceling out of noninvariant terms in 
the two-loop counterterm. In view of the analogy with the R' -operation, it should be expected that this 
property will be retained in all orders of perturbation theory. 

Thus, expression (13) is the desired IR regularization providing the correct invariant separation of the 
IR and UV divergences in TNSMs. 
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