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A PROBLEM OF COOLING CONTROL IN HARDENING OF STEEL 

0. V. Skidanova, N. I. Kulik, V. B. Glasko, Yu. K. Evseev, and S. A. Yurasov 

The paper is devoted to the statement and computer solution of the inverse 
problem on the determination of the parameter controlling the regime of speci­
men cooling during hardening by providing the required cooling rate at a given 
depth. The investigation results can serve as a basis for elaborating automatic 
control systems for the technological process of thermal treatment of machine 
elements. 

1. Irrespective of the way the hardened specimens are heated, their cooling is usually achieved [l] by 
a liquid cooli.nt flowing over the specimen surface. The rate of specimen cooling decreases quite rapidly 
with increasing depth. To obtam the martensite structure in the near-surface layer of a given thickness it is 
necessary to provide a sufficiently high cooling rate at the lower layer boundary, and the problem consists in 
finding the values of the parameters controlling the cooling process which allow this purpose to be attained. 

In the present paper the control prablem is considered within a mathematical model that was earlier 
identified with the real process [l). The model is rather simple, so the calculation of the control parameter 
value at a given depth inside the near-surface martensite layer in a steel specimen admits of complete 
computer-aided automation. 

The possible solution instability in this problem as an in verse problem, which is the main difficulty 
in the solution of this class of problems and requires the application of some regularizing operators [2], is 
overcome by using a priori information about the range of the single unknown parameter. 

In addition, we used the following initial data to provide an automatic solution of the problem. First, 
the dependence of thermophysical parameters of the material, such as the thermal 'conductivity >., the heat 
capacity c, and the density p on the temperature T [2) (these quantities are set by tables and are supplemented 
with a linear interpolation subprogram). Second, the microstructure diagram [3), i.e., the dependence of 
the critical cooling rate Ver (which assures the martensite forma.tion upon hardening) on the carbon content 
in the given sort of steel, which may be alloyed (from the tabular representa.tion of this curve only a single 
value is taken that conesponds to the given percentage of carbon).· 

Because the processes under study refer to a near-surface layer that is thin compared to the specimen 
size, the problem can be solved with no regard for the actual shape of the specimen and a.ssuming it to be 
an· infinite cylinder ofradius R. 

2. Within the framework of the adopted geometrical model the heat-conduction-cooling process is 
described by the following boundary value problem: 

18( 8T) 8T r 8r r>.(T) 8r = c(T)p(T)Bt' 

Tli=o =To, 8TI - -o 8r r=O - ' 

8TJ -->.(T)-
8 

= H(T-T)lr=R· 
T r.:R 

(1) 

Here the condition at the surface r = R conesponds to convective heat exchange during cooling by a liquid 
coolant of temperature T flowing over the specimen surface, which is in agreement with the real process [4). 
In the case under consideration (heating in a furnace), the initial condition at t = 0 conesponds to the 
through heating of the specimen to temperature To, but it can be replaced by a more general condition. 
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As a single parameter controlling the surface cooling, it is reasonable to take the heat exchange coeffi­
cient H. As a characteristic of the temperature field T(r, t) to be compared with Ver at a given depth h, we 
take the average cooling rate in the given temperature interval: 

v0 , = v.,(h) = (T1 -T.)/At. 

Here the quantities T, (• = 1, 2) bound the critical interval that includes a minimum on the continuous 
cooling transformation diagram [3] T = T(t), and we have At = Jt1 - t2J, where t, is determined by the 
algorithmic solution, relative to t, of the equations T(R - h, t) = T, whose left-hand sides are determined 
for each h by the solution procedure for problem (1) supplemented with a linear interpolation subprogram. 

It is clear that for a fixed h the quantity Vav is a function of the control parameter H, and the latter 
can be found from the algorithmic representation of the equation 

F(h, H) = Vav(h, H) - Ver= 0 (2) 

as a function of h: H = H(h), which is the central element of the program meant for solving the control 
problem. 

3. Since the limits of variation of H can be set beforehand and H( h) is a monotonically increasing 
function, the problem in question turns out to be properly posed. Equation (2) is solved automatically by 
the "fork" method [5], which under the indicated conditions satisfies the regularization principle [6]. 

The necessary information about the temperature field is obtained by means of a finite-difference 
two-layer implicit iteration-free scheme on a four-point pattern [5] applied for solving the heat-conduction 
problem (1). If y is a network function corresponding to the continuous temperature T, mis the index of the 
time layer in which its values have already been determined, and n is the index of the node with respect tor, 
then the values of yin the current (m+ l)th layer (with step r) at the internal nodes r. (n = 1, ... , N -1) 
are determined by the following formulas: 

1 [ c- -) c- - l] l.A( )Y•+i-Y. Ar2 "•+t Y..+l - Yn - "•-t Yn - Y..-1 + Tn Yn 2Ar 

- l(_ ) =en- Yn-Yn; .,. 
1 1 

"n+i = 2fA(Yn)+.A(Y,.+1)J. "•-t = 2fA(Yn)+.A(Yn-1)J, 

c;. = c(y.)p(y.) = c(y.) (r. = nAr, Ar= R/N). 

(3) 

To ensure an accuracy of the second order with respect to Ar the boundary conditions in problem (1) are 
approximated in the following way. 

For r = 0 we have y~ = 2~r ( -3!/o + 4!/1 - i/2 ), and, by virtue of the boundary condition, we obtain 

i'2 = 4!/1 - 3!/o. Substituting this expression into (:3) for n = 1 we arrive at the condition 

!lo = ><1!71 + µ,, •1 = [ 3•111 - •112 - c(yi) ti.;•] / (3•a12 - •112), 

µ1 = [ c(y1) A;' Y•] / (3••12 - •11.J-

Similarly, setting!/}, = (l/2Ar)(!/N-• - 4!/N-l + 3!/N) for r =Rand using the boundary condition we 
exclude yN_2; then the substitution of this quantity into (3) for n = N -1 results in the expression 

YN = "•YN-1 + µ,, where "• = [C(yN-1)(Ar
2 
fr)+ "N-1/2 - 3,.N-•/2]/[•N-1/2 

- "N-a/2 (H · 2Ar/.A(yN) + 3)], 

[ 
- 2 

µ, = -2HTAr"N-•/2f .A(yN )- C(yN-1)YN-1 Ar /r]/[xN-1/2 

- "N-S/2(2HAr/.A(yN) + 3)]. 
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The adopted finite-difference scheme with approximation order 0( D.r2 + T) is solved by the factori2ation 
method [5]. 

The parameters of the finite-difference scheme D.r = O.OlR mm and T = 0.1 s chosen as a result of 
a methodical experiment in the required interval of values of H (HE [5000, 16000] kcal m-2 h-1 deg- 1) 

provide, according to the Runge estimate [5], an approximation accuracy for the temperature field (in the 
operation region) about 2-3%. This gives a 4-5% error in the determination of Vav· 

The program admits of a linear version of the problem, in which the values of the parameters A, c, and 
pare "frozen" at the initial level To, which corresponds to very fast cooling [1]. 

4. The elaborated program can give the required values of the control parameter when being included 
in the software for a small computer, and this will help improve the quality of the products. 

At the same time, the results of the mathematical experiment presented below give an indication of 
the dependence of the desired quantity on the geometrical parameters of the specimen. The calculations 
were carried out .for carbon steel (Steel-20) at T1 = 705°C, T2 = 500°C, v0 , = 200°C/s, To = 840°C, and 
T=20'C. 

2P 
h,mm 

Fig. 1 

Figure 1 demonstrates the dependence of H on the hardening depth, which reflects the natural increase 
in the surface cooling rate with increasing h. In all cases the deviation of v .. from Va = 200 deg/s at the 
corresponding depth did not exceed 1 deg/s. 

The estimate of the •av(ho) value, obtained using the data of a physical experiment at ho = 2 mm 
for the indicated sort of steel, R = 24 mm and the value H = 15 000 kcal m- 2 h-1 deg-1 calculated by the 
elaborated program (vav(O) = 1500 deg/s) is about 215 deg/s. For the total error of the experiment and 
processing of the experimental temperature curves of ±25 deg/ s ( - 10%), the agreement with the theoretical 
value of v .. (ho) = 200 deg/s can be considered satisfactory. 

In the range of component dimensions we are interested in, the dependence of H on R was found to 
be weak. For example, at the surface (h = 0) we have H = 4968, 5001, and 5034 kcal m- 2 h-1 deg- 1 for 
R = 40, 50, and 70 mm, respectively. 

The authors express their gratitude to A. N. Tikhonov for valuable discussion and to I. N. Shklyarov 
for his assistance in getting the relevant experimental data. 
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