ние (29). Развитый в работе подход может быть применен для анализа нелинейных возмущений электронных пучков с другими равновесными состояниями и для систем транспортировки с иной геометрией.

ЛИТЕРАТУРА

[1]Swegle J.//Phys. Fluids. 1983. 26, N 6. P. 1670; Swegle J., Ott E.// //Phys. Fluids. 1981. 24, N 10. P. 1821. [2] Swegle J., Ott E.//IEEE Trans. Plasma Sci. 1982. 10, N 1. P. 33. [3] Василенко О. И.//Фнз. плазмы. 1991. 17, № 1. С. 78. [4] Лейман В. Г., Овсянникова О. Б.//Фнз. плазмы. 1989. 15, № 5. С. 625. [5] Sandri G.//Ann. Phys. 1963. 24, N 332. P. 380; Nuovo Cim. 1965. 36, N 1. P. 67. [6] Найфэ А. Х. Методы возмущений. М., 1976. [7] Игнатов А. М.//Физ. плазмы. 1987. 13, № 2. С. 238. [8] Gardner C. S., Green J. М., Кгизка1 М. D., Міига R. М.//Phys. Rev. Lett. 1967. 19. Р. 1095. [9] Захаров В. Е., Манаков С. В., Новиков С. П., Питаевский Л. П. Теория солитонов. Метод обратной задачи. М., 1980.

Поступила в редакцию 26.04.91

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1992. Т. 33, № 1

УДК 535.241.13:534

АКУСТООПТИЧЕСКАЯ ФИЛЬТРАЦИЯ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ С ИСПОЛЬЗОВАНИЕМ ДВУХ РЕЖИМОВ БРЭГГОВСКОЙ ДИФРАКЦИИ

В. Б. Волошинов, А. Н. Усков

(кафедра физики колебаний)

Приводятся результаты теоретического исследования возможности спектральной фильтрации неколлимированных оптических пучков акустооптическими фильтрами на кристалле парателлурита. Представлен расчет параметров фильтра сложной конфигурации с двумя пьезоэлектрическими преобразователями. Устройство обеспечивает работу в различных режимах дифракции, отличающихся селективностью взаимодействия света и звука.

В настоящее время во многих областях науки и техники находят широкое применение перестраиваемые акустооптические фильтры [1]. Фильтры обеспечивают спектральную фильтрацию и оптоэлектронную обработку как коллимированных, так и неколлимированных пучков света, а также оптических изображений. Получаемая помошью С фильтров информация о спектральном составе электромагнитного излучения объекта дает возможность определять строение различных тел, исследовать их свойства и позволяет оперативно вести наблюдения за процессами, происходящими в этих телах. Акустооптические фильтры обладают рядом достоинств. В первую очередь это узкий спектральный интервал пропускания, быстрая электрическая перестройка в широком диапазоне длин волн света, возможность управления коэффициентом пропускания устройства, большие значения угловых апертур. Акустооптические устройства обеспечивают фильтрацию электромагнитного излучения в нескольких спектральных интервалах одновременно при регулируемом коэффициенте пропускания в каждом из этих интервалов. Таким образом, акустооптические фильтры (AO Φ) относятся к весьма перспективному классу адаптивных оптоэлектронных устройств.

Обладая несомненными преимуществами, акустооптические фильтры имеют и некоторые недостатки. Например, при фиксированной угловой апертуре оптического луча с помощью акустооптических VCTройств не удается перестраивать полосу пропускания в широких пределах. В то же время на практике часто возникает необходимость иметь фильтр с регулируемой спектральной полосой, причем желательно, чтобы полоса менялась в больших пределах, т. е. в несколько раз. Одно из возможных решений этой задачи заключается в использовании фильтра с секционированным преобразователем. Как известно, полоса пропускания фильтра $\Delta\lambda$ при прочих равных параметрах зависит от размеров области акустооптического взаимодействия и определяется длиной пьезоэлектрического преобразователя l [1]. Управление селективностью взаимодействия света и звука подобного фильтра обеспечивается при подаче модулированных по амплитуде и сдвинутых по фазе электрических сигналов к секциям пьезопреобразователя. Однако указанный способ управления спектральной полосой является достаточно сложным и неудобным для практического использования.

В настоящей работе оптические изображения предлагается анализировать в два этапа. На первом этапе исследуется все изображение в целом с относительно невысокой спектральной разрешающей способностью $R = \lambda_0 / \Delta \lambda$. При этом оперативно выявляются интересующие фрагменты и детали изображения. На втором этапе проводится подробное изучение спектрального состава излучения не всего объекта, а именно выявленных областей. Очевидно, что при проведении второго этапа исследований требования к разрешающей способности устройства фильтрации резко возрастают. Полоса пропускания фильтра $\Delta \lambda$ на втором этапе исследований уменьшается.

Для спектральной фильтрации изображений по новой методике предлагается использовать АОФ, имеющий сложную конфигурацию, с двумя пьезоэлектрическими преобразователями, как показано на рис. 1. Селекция может быть осуществлена в кристалле парателлури-

та с неколлинеарной геометрией акустооптического взанмодействия при возбуждении с помощью льезопреобразователей ПП-1 ПП-2 двух сдвиговых акустических волн. Одна из них распространяется вдоль оси [110] кристалла TeO₂, а другая — под некоторым углом α к этому направлению. Световой пучок может взаимодействовать как с первой, так и со второй акустической волной. Фильтрация электромагнитного излучения обеспечивается за счет селективности анизотропного брэгговского рассеяния света на медленных сдвиговых

Рис. 1. Неколлинеарный АОФ на парателлурите с двумя режимами дифракции

акустических волнах, распространяющихся вблизи направления [110] кристалла парателлурита. Использование данных акустических мод дает возможность достигнуть высоких значений акустооптического (AO) качества и обеспечить близкую к единице эффективность дифракции при сравнительно малых ультразвуковых мощностях [1].

Известно, что явление дифракции можно рассматривать как фотон-фононное взаимодействие. При этом из кванта падающего света с

43

волновым вектором \mathbf{k}_i образуется квант дифрагированного света с волновым вектором $\mathbf{k}_d = \mathbf{k}_i + \mathbf{K}$, где \mathbf{K} — волновой вектор фонона. Расчет параметров АО фильтрации удобно провести для каждой из акустических волн в отдельности. На рис. 2, а показана векторная диаграмма фотон-фононного взаимодействия при дифракции света на звуковой волне, когда звук распространяется вдоль направления [110]. Падающий свет имеет необыкновенную, а дифрагированный пучок обыкновенную поляризацию [2—4]. Из векторной диаграммы следует,

Рис. 2. Векторные диаграммы неколлинеарного акустооптического взаимодействия: направление звука ортогонально (а) и неортогонально (б) оптической оси

что дифракция происходит лишь в том случае, когда угол падения θ_{z_y} . отсчитываемый от направления [001], частота ультразвука f_1 и длина волны света λ связаны между собой соотношением

$$f_1 = \frac{V}{\lambda} \left(n_i \sin \theta_z - \sqrt{n_0^2 - n_i^2 \cos^2 \theta_z} \right), \tag{1}$$

где $n_i = n_0 n_e (n_e^2 \cos^2 \theta_z + n_0^2 \sin^2 \theta_z)^{-1/2}$, n_0 , n_e — показатели преломления для обыкновенной и необыкновенной волн соответственно, V — скорость ультразвука. На длине волны $\lambda = 0,63$ мкм показатели преломления TeO₂ равны: $n_0 = 2,26$, $n_e = 2,41$, а скорость ультразвука в кристалле парателлурита при $\alpha = 0$ имеет значение V = 616 м/с. Зависимость угла падения θ_z света с длиной волны $\lambda = 0,63$ мкм от акустической частоты f приведена на рис. 3 (кривая 1).

Очевидно, что при монохроматическом освещении полоса частот дифракции Δf зависит от угловой апертуры падающего света $\Delta \theta$ и возрастает с ее увеличением. В случае коллимированных оптических пучков ($\Delta \theta$ =0) дифракция наблюдается в некоторой отличной от нуля полосе частот Δf . Взаимодействие обеспечивается расходимостью ультразвука. Угол расходимости акустической волны находится по формуле

$$\Delta \alpha_1 = \frac{V}{f_1 l_1},$$

где l_1 — размер пьезопреобразователя ПП-1.

Для определения параметров фильтрации необходимо знать величину расстройки η , которая характеризует степень фазового рассогласования при акустооптическом взаимодействии (AOB): $\mathbf{k}_i + \mathbf{K}_1 + \Delta \mathbf{K} + \mathbf{\eta} = \mathbf{k}_{d_1}$ [5]. Выражение для расстройки может быть получено с помощью векторной диаграммы (рис. 2, *a*):

$$\eta = \frac{2\pi n_0}{\lambda} \sqrt{1 - \left[\frac{\lambda \left(K_1 + \Delta K\right)}{2\pi n_0} - \frac{n_i \sin \theta_z}{n_0}\right]^2 - \frac{2\pi n_i}{\lambda} \cos \theta_z,}$$
(2)

где $K_1 = 2\pi f_1/V$ — волновое число ультразвуковой волны и $\Delta K = 2\pi \Delta f/V$. При этом для фиксированного угла падения света θ_z брэгговское взаи-

Рис. 3. Углочастотные характеристики для парателлурита

Рис. 4. Зависимость полосы пропускания фильтра от оптической угловой апертуры: α=0 (1) и 10° (2)

модействие с эффективностью более 50% происходит в некоторой полосе частот Δf . Выражение для этой полосы можно получить, используя соотношение (2):

$$\Delta f_{1,2} = \pm \frac{V}{\lambda} \left[n_i \sin \theta_z - \sqrt{n_0^2 - \left(n_i \cos \theta_z \pm \frac{\lambda |\eta|}{2\pi} \right)^2} \right] \mp f_1,$$

$$\Delta f = \Delta f_1 + \Delta f_2.$$
(3)

Значение f_1 соответствует максимуму интенсивности дифрагированного света и находится по формуле (1). Очевидно, что соотношение (3) переходит в (1), если принять $\eta = 0$ и $\Delta f = 0$.

Как известно [1], интенсивность дифракции зависит от величины расстройки ηl . При выполнении условия $|\eta l| \ll 0,8\pi$ ослабление интенсивности дифрагированного света происходит не более чем в два раза. С учетом ограничения на величину расстройки из соотношения (3) определяется полоса Δf . Используя полученное значение полосы частот дифракции света, можно рассчитать полосу пропускания фильтра $\Delta\lambda$ при работе с некогерентным светом. В работе [6] показано, что величины Δf и $\Delta\lambda$ связаны между собой соотношением

$$\frac{\Delta\lambda}{\lambda_0} = \frac{\Delta f}{f_1}.$$
(4)

Из графика на рис. З и соотношения (4) следует, что селективность AOB возрастает с увеличением угла падения света θ_z , так как при $\theta_z \rightarrow \pi/2$ дифракция становится близкой к коллинеарной.

При использовании неколлимированных пучков света с большими угловыми апертурами $\Delta \theta$ расходимостью звука можно пренебречь и считать, что спектральная полоса пропускания определяется только расходимостью светового луча. При условии $n_e - n_0 \gg n_0$ полоса пропускания может быть оценена по формуле

$$\Delta \lambda = \frac{\Delta n V}{f_1} \cos \theta_z \, \Delta \theta, \tag{5}$$

где $\Delta n = n_e - n_0$.

Из соотношения (5) следует, что спектральное разрешение линейно возрастает с увеличением угловой апертуры падающего света. Поэтому АОФ, использующие акустические волны, которые распространяются вдоль направления [110], и работающие с неколлимированными оптическими пучками, всегда характеризуются относительно большой спектральной колосой.

По сравнению с устройствами на основе рассмотренной геометрии АОВ существенным преимуществом с точки зрения угловой апертуры и спектрального разрешения обладают широкоапертурные $AQ\Phi$. В этих фильтрах акустическая волна распространяется под некоторым углом а к направлению [110] [5-7]. Векторная диаграмма фотон-фононного взаимодействия имеет вид, показанный на рис. 2, б. Дифракция света происходит на ультразвуковой волне, возбуждаемой пьезопреобразователем ПП-2. Из работ [6, 7] известно, что широкоапертурная геометрия АОВ реализуется в кристалле ТеО2 при значениях угла α , лежащих в пределах $0 < \alpha < 19^\circ$. Для широкоапертурной геометрии взаимодействия зависимость $\theta_z(f)$ имеет несколько иной характер, чем в случае $\alpha = 0$. Семейство зависимостей $\theta_z(f)$ для различных значений угла а приведено на рис. З. В точке с вертикальной касательной на кривой $\theta_z(f)$ малому изменению частоты ультразвука соответствует значительное изменение угла падения. Это указывает на возможность использования широкоапертурного случая дифракции на практике для исследования световых пучков с большими **УГЛОВЫМИ** апертурами и получения более высокой разрешающей способности.

Соотношение для частоты звука f_2 , длины волны λ и угла падения света θ_z при $\alpha \neq 0$ записывается в виде

$$f_2 = \frac{V}{\lambda} \left[n_i \sin \left(\theta_z - \alpha \right) - \sqrt{n_0^2 - n_i^2 \cos^2 \left(\theta_z - \alpha \right)} \right].$$
(6)

Независимо от направления распространения ультразвука в кристалле парателлурита дифракция падающего света происходит не на одной звуковой волне с волновым вектором K_2 , а на наборе звуковых волн с волновыми векторами, лежащими в некотором угловом интервале. Значение угла расходимости $\Delta \alpha_2$ определяется по формуле

$$\Delta \alpha_2 = \frac{V}{f_2 leff}.$$

Под l_{eff} здесь понимается эффективная длина области AOB. Известно, что кристалл TeO₂ является акустически анизотропным. В силу этого, как показано на рис. 1, вектор групповой скорости звука S в плоскости дифракции составляет с волновым вектором звука K₂ угол ψ . Следует отметить, что по абсолютной величине угол ψ значительной превосходит α . Например, при ориентации волнового вектора звука под углом $\alpha = 10^\circ$ угол «сноса» акустического столба равен $\psi = 54^\circ$. Эффективная длина взаимодействия с учетом сноса звуковой волны определяется как поперечный размер звукового столба $l_{eff} = l_2 \cos \psi$, где l_2 — размер пьезопреобразователя ПП-2. Границы частотного интервала Δf могут быть получены из условия $|\eta l_{eff}| < 0.8\pi$. Выражения для расстройки η и полосы частот Δf при $\alpha \neq 0$ и $\psi \neq 0$ имеют вид

$$\eta = \frac{2\pi n_0}{\lambda} \sqrt{1 - \left[\frac{n_i}{n_0}\sin\left(\psi - \theta_B\right) + \frac{\lambda\left(K_2 + \Delta K\right)}{2\pi n_0}\cos\psi\right]^2} - \frac{2\pi n_i}{\lambda}\cos\left(\psi - \theta_B\right) + (K_2 + \Delta K)\sin\psi,$$
(7)

$$\Delta f_{1,2} = \pm \frac{V}{\lambda} \left[n_i \sin\theta_B \pm \frac{\lambda|\eta|}{2\pi}\sin\psi - \frac{V}{n_0^2 - \left(n_i \cos\theta_B \pm \frac{\lambda|\eta|}{2\pi}\cos\psi\right)^2}\right] \mp f_2,$$
(8)

$$\Delta f = \Delta f_1 + \Delta f_2,$$

где θ_B — брэгговский угол падения — угол между направлением волнового вектора падающего света \mathbf{k}_i и перпендикуляром, опущенным на направление волнового вектора звука \mathbf{K}_2 , причем $\theta_B = \theta_z - \alpha$. Выражения (7), (8) получены из векторной днаграммы (рис. 2, б). Анализируя формулу (8), можно заметить, что в отсутствие сноса звуковой волны соотношение (8) переходит в (3), а при выполнении условия фазового синхронизма $\eta=0$ из выражения (8) может быть получена зависимость (6). Для осуществления спектральной широкоапертурной фильтрации в настоящей работе предлагается использовать сдвиговые акустические волны, распространяющиеся под углом $\alpha=10^\circ$ к направлению [110] в кристалле парателлурита.

Особенность предложенного способа фильтрации заключается в том, что при одном и том же направлении распространения света в кристалле оптический луч может эффективно взаимодействовать с каждой из двух акустических волн. Направление распространения света и частоты ультразвука, возбуждаемого пьезопреобразователями ПП-1 и ПП-2, подбирается таким образом, чтобы брэгговское условие синхронизма выполнялось при взаимодействии с любой из акустических волн. Это иллюстрирует рис. 3. Расчет показывает, что эффективное широкоапертурное взаимодействие реализуется при дифракции света на акустической волне, генерируемой преобразователем ПП-2, на частоте ультразвука f₂=118 МГц. При этом угол падения монохроматического света с $\lambda = 0,63$ мкм равен 23,5°. В то же время из рис. 3. непосредственно следует, что взаимодействие оптической волны, падающей под углом $\theta_z = 23,5^\circ$, с акустической волной, возбуждаемой пьезопреобразователем ПП-1, может наблюдаться на частоте ультразвука f_1 =55 МГц. В зависимости от того, какой из двух преобразователей генерирует акустическую волну, будет реализован либо первый, либо второй режим брэгговской дифракции. Как было отмечено вы-

47

ше, режим дифракции с $a=10^{\circ}$ является широкоапертурным и, в отличие от дифракции с $a=0^{\circ}$, узкополосным.

Следует отметить, что при возбуждении акустических волн на выходе АО ячейки распространяются два луча. Прошедший световой луч имеет необыкновенную поляризацию, т. е. такую же, что и у падающего света. Дифрагированные световые лучи поляризованы ортогонально входному и распространяются под углами $\Delta \theta_{d_1}$ и $\Delta \theta_{d_2}$ к падающему пучку света. Для расчета углов $\Delta \theta_d$ можно воспользоваться векторными диаграммами (рис. 2). Полученное выражение имеет вид

$$\Delta \theta_d = \theta_B - \arccos\left(\frac{n_i}{n_0}\cos\theta_B\right). \tag{9}$$

В работе были рассчитаны величины углов $\Delta\Theta_d$ для двух режимов брэгговской дифракции. Расчет показывает, что при а=0 угол пространственного разделения между нулевым и дифрагированным лучом внутри кристалла $\Delta\theta_{d_1}=1,3^\circ$, а снаружи $\Delta\Theta_1=n_0\Delta\theta_{d_1}\simeq 3^\circ$. При работе $AO\Phi$ в режиме, использующем широкоапертурный случай дифракции, $\Delta\theta_{d_2}=2,6^\circ$ в кристалле и $\Delta\Theta_2=n_0\Delta\theta_{d_2}=5,8^\circ$ вне его. Значения углов отклонения дифрагированного луча от падающего света представляют особый интерес, так как они фактически определяют максимальную угловую апертуру для пучков света, при которой дифрагированный и прошедший лучи остаются пространственно разделенными. Таким образом, рассмотрение AOB в кристалле TeO₂ показывает, что максимальная оптическая угловая апертура при дифракции на акустической волне, генерируемой пьезопреобразователем ПП-1, составляет 3°, а для широкоапертурной геометрии взаимодействия — 5,8°.

Важнейшей характеристикой АОФ является спектральная полоса пропускания Дл. Как было отмечено выше, полоса пропускания зависит от расходимости оптических и акустических лучей. При работе с коллимированным светом $\Delta \theta \ll 1$ спектральное разрешение определяется расходимостью ультразвука. Расчеты с использованием соотноше-ний (4), (5) и (8) показывают, что при одинаковых размерах пьезопреобразователей $l_1 = l_2 = 5$ мм минимальная полоса пропускания в широкоапертурном режиме дифракции равна $\Delta\lambda_2=45$ Å, а при $\alpha=0$ $\Delta\lambda_1=$ =30 Å. Рассчитанные по формулам (4)-(8) зависимости полосы пропускания фильтра от величины угловых апертур в кристалле TeO2 показаны на рис. 4, где геометрии АОВ с $\alpha = 0$ соответствует кривая 1, а зависимость 2 получена при α=10°. Из рис. 4 следует, что в пренебрежении расходимостью ультразвука полоса пропускания фильтра при использовании первого режима дифракции линейно возрастает с увеличением угловой апертуры падающего света и принимает значение 350 Å при Δθ=1,3°. Для широкоапертурной геометрии АОВ зависимость $\Delta\lambda(\Delta\theta)$ носит квадратичный характер. Величине угловой апертуры $\Delta \theta = 2.6^{\circ}$ в этом случае соответствует спектральная полоса $\Delta \lambda_2 =$ =90 Å. Таким образом, селективность рассеяния при α =0 и α =10° отличается как минимум в четыре раза.

Как было отмечено выше, при использовании световых пучков с угловыми апертурами, превышающими $\Delta \theta_d$, происходит пространственное наложение падающего и дифрагированного лучей (рис. 5). Для гашения исходного света, не несущего полезной информации, обычно используется селекция по поляризации с помощью скрещенных анализатора и поляризатора. Однако при этом не удается добиться полного ослабления прошедшего светового потока. Такой эффект связан с интерференцией поляризованного излучения, прошедшего анизотропную среду. В работе [8] показано, что выражение для относительной интенсивности остаточных световых потоков имеет вид

$$\frac{I}{I_0} = 2 \frac{\mathrm{tg}^2 \,\varphi \, \sin^2 \theta_z}{(\mathrm{tg}^2 \,\varphi + \sin^2 \theta_z)^2},\tag{10}$$

где углы θ_z и φ определяют направления распространения света в кристалле в плоскости АОВ и в ортогональной плоскости соответственно. Расчет по формуле (10) ноказывает, что при использовании ко-

Рис. 5. Пространственное разделение прошедшего и дифрагированного лучей

герентного излучения с длиной волны $\lambda = 0.63$ мкм и $\Delta \theta = 2.6^{\circ}$ величина засветки на границе угловой апертуры составляет $I/I_0 = 0.26$ %. При работе с некогерентным светом происходит суммирование интерференционных картин для каждой спектральной компоненты, и на приемное устройство поступает широкополосный фоновой сигнал недифрагированного излучения. Для анализа работы устройств фильтрации недостаточно знать величину остаточного светового потока. Кроме этого, необходимо учитывать отношение сигнал/фон на выходе прибора. Выражение для отношения сигнал/фон имеет вид

$$\varkappa = \frac{T(\lambda_0) \Delta \lambda!}{\Phi(\lambda_0) (\lambda_2 - \lambda_1)},\tag{11}$$

где T(λ_0) — коэффициент пропускания AO устройства в максимуме интенсивности дифрагированного света, $\Phi(\lambda_0)$ — фоновая засветка, λ₁, λ₂ — пределы изменения спектрального состава излучения. Следует отметить, что при пространственном разделении прошедшего и дифрагированного лучей остаточный световой поток отсутствует и отношение $\varkappa \rightarrow \infty$. При дифракции света на акустической волне, распространяющейся под углом $\alpha = 10^{\circ}$ к направлению [110], отношение сигнал/фон невелико. При оптической угловой апертуре $\Delta \theta = 2,6^\circ, \varkappa = 9$. Поэтому желательно, чтобы прошедший и дифрагированный лучи пространственно не перекрывались. В то же время при α=0 полоса пропускания фильтра оказывается широкой и отношение полезного сигнала к фоновому увеличивается: и=70. Поэтому перекрытие исходного и дифрагированного пучков света допускается, и в качестве оптической угловой апертуры можно выбрать $\Delta \theta = 2,6^\circ$, т. е. предельно допустимую угловую апертуру при широкоапертурной дифракции с а=10°. В итоге два исследованных режима фильтрации электромагнитного излучения с различной селективностью взаимодействия света и звука характеризуются полосами пропускания $\Delta \lambda_1 = 700$ Å и $\Delta \lambda_2 = 90$ Å, отличающимися в восемь раз.

З ВМУ, № 1, фязика, астрономия

Таким образом, приведенные в настоящей работе расчеты параметров акустооптической фильтрации позволяют сделать вывод, что в кристалле парателлурита возможно осуществление спектральной селекции неколлимированного электромагнитного излучения с использованием двух режимов брэгговской дифракции. Режимы работы фильтра отличаются неодинаковой селективностью взаимодействия света и звука и полосами пропускания, отличающимися на порядок. Возможность управления спектральной полосой пропускания является несомненным достоинством устройств фильтрации, которые могут быть созданы на основе рассмотренного типа АО взаимодействия.

ЛИТЕРАТУРА

[1] Балакший В. И., Парыгин В. Н., Чирков Л. Е. Физические основы акустооптики. М., 1985. [2] Уапо Т., Watanabe A. // Аррі. Рhys. Lett. 1974. 24. Р. 246. [3] Утида Н., Саито Н. // ТИИЭР. 1974. 62, № 9. С. 113. [4] Волошинов В. Б., Парыгин В. Н., Хаптанов Б. Б. // Вестн. Моск. ун-та Фяз. Астрон. 1978. 19, № 5. С. 7. [5] Волошинов В. Б., Никанорова Е. А., Парыгин В. Н. // Раднотехн. и электроника. 1986. 31, № 12. С. 2469. [6] Волошинов В. Б., Миронов О. В. // Письма в ЖТФ. 1988. 14, № 17. С. 1541. [7] Волошинов В. Б., Кулаков Л. А., Миронов О. В. // Вестн. Моск. ун-та. Физ. Астрон. 1989. 30, № 1. С. 79. [8] Волошинов В. Б., Миронов О. В., Троц Е. В. // Опт. и спектр. 1991. 68, № 2. С. 452.

Поступила в редакцию-28.06.91

ВЕСТН, МОСК, УН-ТА, СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1992. Т. 33, № 1

УДК 537.52

БАЛАНС ТЕПЛОВОЙ ЭНЕРГИИ В СВЧ-СУРФАТРОНЕ НИЗКОГО ДАВЛЕНИЯ

П. С. Булкин, А. П. Ершов, Г. С. Соянцев, М. М. Рахман, Л. И. Цветкова

(кафедра физической электроники)

Дан анализ результатов экспериментальных исследований радиального теплового потока Q_T (z) вдоль плазменного столба СВЧ-сурфатрона в Хе при давлениях 0,5—1,2 Тор. Показана важная роль потерь, вызываемых уносом энергии на стенки положительными ионами, которые ускоряются полем амбиполярной диффузии и градиентом потенциала вблизи стенки разрядной трубки. Этот канал потерь наиболее эффективен в тяжелых газах. В условиях проведенных в работе экспериментов свойства разряда по всей его длине можно описать с помощью единой кинетической модели плазмы.

ВЧ- и СВЧ-сурфатроны представляются весьма перспективным типом газоразрядных приборов низкого давления для использования в плазмохимии, нанесения пленочных покрытий, создания газовых лазеров [1—4]. Разряд в СВЧ-сурфатроне представляет собой плазменный волновод, по которому распространяется поверхностная волна (surface wave), поддерживающая ионизацию газа. При этом в широком диапазоне частот (10⁶—10¹⁰ Гц) можно получить плазменный столб значительной протяженности и различной формы, определяемой диэлектрической стенкой, ограничивающей разряд.

Особенностью разряда на поверхностной волне (ПВ) являются высокая, превышающая критическую для данной частоты концентрация электронов n и ее падение вдоль разряда в направлении распространения волны ог [1—4]. Два этих фактора обусловливают значительный и