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THE INVERSE PROBLEM FOR A ONE-DIMENSIONAL SINGULAR
OSCILLATOR

V. B. Gostev and A. R. Frenkin

The inverse problem for the one-dimensional Schriodinger equation with a singu-
lar potential is solved using an oscillator with perturbation Az~? as an example.
The corrections to the potential were found to possess a weaker singularvity as
compared to the seed potential.

In this paper we consider the problem of calculating corrections to the potential of a ote-dimensional
singular oscillator (A =2m =w/2 =1}

Vie)=e) 4+ W(z)= P s(s+ Dxr™?) (I}

which appear upon a change in spectral data (energy levels and normalization constants). This problem
arises as a natural completion of the earlier solved direct problem with the indicated potential {1-3] and
the inverse problem for a one-dimensional harmonic oscillator [4] (17(x) = r?, ~2¢ < r < 2¢) and a radial
oscillator [3] (V{r) = r? + {(I+1)r~%, 0 < r < ).

The inverse problem is an umportant part of any one-dimensional problem, aud its solution for a
potential with singularities at £ = 0 and z = oc is by far not trivial. The general method for solving
inverse problems with an increasing potential (2 — +2¢, r — 20) was found only as recently as the nineteen-
eighties [4, 8, 7).

Potentials with the singularity Ar~* have physical applications because they tnodel the transforma-
tions of the Universe at the initial stage of its development [38] and describe the spectroscopy of diatomic
molecules [9). Some other applications of these potentials are indicated in [1C].

It 15 clear that a change in the experimental data on energy levels or in information about the time
of the tunnel transition of the Universe to another state may result in a variation of the potential without
changing the singul..ity at @ = . Therefore not only theoretical but also applied problems require a solution
of the inverse problem for the pivot potential with the singularity Az~%. Oune of the methods for solving
this inverse problem is outlined in the present paper. The method is applicable to the case of “any” smooth
potential {7(x) in (1). It is presented iu detzil only for the case of the seed potential () = 2% in (1). for
which there are closed analytical expressions for some corrections to the potential (exact soluticns}.

The stationarv Schradinger equation (SE} for this svstem possesses the well-known exact solutions
(see [L1], p. 158) and is thoroughly investigated (see, e. g., {12, 13]). However. in our opinion. the correct choice
of even solutions te the SE with potentinl (1) was justified only recently [2. 3]. The even SE eigenfunctions
wirh Hamiltontan (1) have the form (2@ > 0)

1-2s=-F

bplz) =z~ exp{—-z:?‘/Q}F( -

— 1/2,::2). (2)

where E is energy and F(a,b. =} is the confluent hypergeometric function which is regular at = = 0 (see [14].
p. 321). For @ — +0, function (2) is “normalized” by the condition

. 5 .
5111’5_103: welzt = L )
The even energy levels are equidistant [12. 3}

Enp =~Zs+1+4dny, np=0,1,2,..., {4)
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as well as the odd ones:
E,.. =2 +3+4dn_, (3

whose wave functions (z > 0)

3425~ F Z’zg),

w_(;t:)zz:"”exp{-;cz/?}F( s+ (6)

“normalized” by the condition
. —s . -
31_1’15_10(3 yo(z) =1, (7
coincide with the radial wavefunctions for oscillator (1) (0 € £ < o) (see [11], p. 140).

Using functions (2) and (6) one can construct pivet solutions to SE (1) and pass to the inverse problem
of reconstructing the corrections to potential (1) following variation of the spectral data by the Gel'fand-
Levitan (GL) method [15] as applied to the case of attractive potential [16]. To write down the GL integral
equation it i1s necessary to construct the set of regular (pivet) solutions to SE (1) throughout the axis
-0 < z < co. For this purpose one must indicate a rule for the extension of any solution of the SE with the
singular potential W(z) = s(s + 1)z~2 in (1) across the point z = 0 {not necessarily with an even smooth
potential I/ (2} in {1}). As such a rule we suggest the local even (odd) extension to z < 0 for the SE solution
components satisiying the same boundary conditions for £ — -0 as the functions wy (&) and v_{x) (23, {#)

in [1].

We choose £ = —o¢ as a regular point. Then 1t 1s convenient to take as a regular solution o ST (1) the
solution that has at r — —2x¢ the same asymptotic behavior as the SE solutions for the haruicnie oscillator

(s = 0) decreasing for r — —oc:
waszexp{—.rz/‘Z}]rlE?—_l, I — -, Ry

This means that the regular solution ¥.{z) to SE {1) is subject to the “normalization” condition (an analog
of conditions (3) and (7))
: lim exp{z?/2} |z}~ F ¢ (z) = 1. (9)

Such are the solutions to SE (1) (z < 0, and E is arbitrary)

1 '—.23 —_ E a -
bole) = [a ™ exp{—a?/2)U (==, ~s + 1/2,2% ), (10)
where L'(a.b.z) is the confluent hypergeometric function that is regular for = — =3¢ fses (L1 pp 221

and 325).
On extending function (10) to = > 0 according to the above rule (with the change of the transition

direction) and taking into account the relationship between the various sclutions to SE (1) (see [14], p. 321)
we find

I_L‘,-(Z') = ."1.;.{,‘)4.(17) -+ A...w_{:':), z > 0, (1L
T
cos msT (32=Ep(1 )’ (
2 . 19)
T

cosn'sl'(l—‘-‘-gq’f'ﬁ)l‘(%+s)'

A.+ =

A_ =

! 111 (1)7 (5)) tha fu'n': tl:n li? (z) 125 an aSYIIl[?COHCS nct eahﬂlc’ or
I — +00.
u)r. r = —Eft 2]
COS T I - l‘! E - 2 . 3
( ) o 8 ( 3425 E) ( -5 — )"”“ e{p{r / } ( 3]

On the spectrﬁm (4}, (5), the regular solutions have the form

Yy = (-1)”+n+EL;£ %+3)(22)|z|" exp{—-z/2}, (14)

£+3)

bre = (~1rn L8 ) 2 e exp (e /2), (13)
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where L% (z) is the generalized Laguerre polynomial (see [14], p. 580). The asymptotics of ¥4 (z) for
2 ~» +00 is of course decreasing:

Yrp (2} = exp{—rg/ﬁ}mg'?. {16)

In what follows it is convenient o index the wave functions and the energy levels in the order of

Increasing energy (the even and odd levels alternate). In this case we have (nyp, = m/2, m = 0,2, 4...;
n.=(m-1/2, m=135...)

Ea={2m+1)-2(-1"s, m=0,12.... {(17)

The normalization constants C, of regular functions (14) and (15) have the form

7;&';&]-1:[I‘(Em_25-1)I‘(E"‘+_2S+3)]_l. (18)
=

cn |

4 4

Using the pivot regular solutions {10), {11), (14), and (15) one can write dewn the GL integrai equa-
tion [15. 16] for a preassigned change in the spectral data (£,,;,. €' ). The solution to the GL aquation allows
one to find corrections AV to the potential and new regular (for the potential 17+ AL7) wave functions
w,.(2) (on the spectrum of ¥,,(x)). In the case of a change in the finite number of spectral data, the GL
equation is solved in guadratures. Tlhe expressions for AV and w,,(x) are given in {16] (where rhe lower
lirnit of integration 0 should be replaced by -2 in all the formulas}.

QF interest are Llie asyinptotics of Em and of AV for ¢ — 0U,%2¢. To tind thewm use s made of
asymptotics (8), {13}, and (16) and formuias {2} and (§) for x — +0.

We describe the behavior of &, and AV in some typical cases.

1. A change in the normalization constant: Cr, — Cm = Cm + ACwm. In this case

Vm(2) = exp{=2?/2} || E"D? = g (2), & — ~2c, (19)
Y (2) = ¥m(£)Cm /Crm, T — 400, . (20}
i f{z) = Ua(), 2 — %o (21)
wlz) ~ 2|75 —0. (23

The parity is not retained after C,, has been changed:

Copl—e) # £7,2(2), (2
AV = —dACh exp{—27/2}|z|F, & — &, (244)
AV ~ lzM®2z), r—0. m=1,3.5.... (23

where z(#) is the signature fitncrion:

4AC AL se(z)a] (12 2ACH )P AL |uf=*
TIR 0 /DACKCaT I+ (1/2AC )
(1) (m /2 + 12 = )

Fil/2 ) '

AV =

The first term has the strongest singularity in correction (26). ‘
2. The inclusion of an additicnal level £ with normalization constant ' vields

- 4?exp{—r2}i£|5‘ I — —oc,
AT A2 (E)se(z) |z~ (1#20)

AV =0

0
14+ C [ ¥XE. z)dx (28)

-

-4, r— 4.
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where A, (E) is determined by formuia (12); for ¥,(E, r) see (10).
3. The exclusion of the level £}, leads to results close to {28), in which, however,

AV =4, ¢ -— <00, (29

4. A shift of the level gives
AV ~z7% 2 — 4. (30)

Note that, in contrast to the radial case (0 € » < o), all the results of the inverse problem throughout
the axis ¢ (—ooc < = < ) have a trivial twofold degeneration dependent on the clioice of the regular point
{—ac or +2¢). The formulas obtained for s — 0 and £ — +7c coincide with the analogous {ormulas for the
one-dimensional oscillator (s = §) partly presented in [4] and for the radial oscillaror (v — 22} iu [3].

As to the asymptotics of AV for r — O described by {26) and (28). which is also characteristic of
cases 3 and 4, it is a new nontrivial result. Note that the singularity in (28) (=1/2 < 5 < 1/2) is weaker
than that of the pivot potential (1) (and of the related point potential (§V = —2sé(z)|=|~* [1]).

In the case when the even functions of Hamiltonlan (1) are for some reason chosen in the form of a
combination of Y4 (z) and ¥.(x) in (2) and (6) (this possibility was discussed in [1}), the proposed method
of solving the inverse problem can be easily generalized.

However. if the singular part of the potential has a weaker singularity than (I = g 117 = Mar™*
0 < v « 2 (see [17]). then the choice of an even SE solution requires additional physical reasons as compared

o [2, 3]. Therefore the solution o the inverse problem presented here cannot be extended automatically to
the valiues of  less than 2. This case will be investigated separately.

The solution to the inverse problem found in this paper can also be used lor sonie orher porensials wirh
the singularity Ar=?

In this case the solution to the inverse problem can be applied for sclving the Korteweg-de Vries
equation with singular initial data (1~ Ar=% & — 00V == 0, 2 = £x¢) by analogy wirh the nonsingular
Korteweg—de Vries problem [13].

Thus, we have managed to fill one of the few gaps in the classical problem of reconstructing the potential
from spectral data and revealed, in so doing, the nontrivial behavior of AV for z — 0.
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