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THE INVERSE PROBLEM FOR A ONE-DIMENSIONAL SINGULAR 

OSCILLATOR 

V. 13. Gostev and A. R. Frenkin 

The inverse problem for tl1e one~<lin1ensional SchrOdinger equatio11 witl1 a si11gu
lar potential is solved using an oscillator with perturbation .\.x-2 as an exarnple. 
The corrections to the potential were fot_1nd to possess a weaker singularity as 
con1pared to the seed pote11tial. 

In this paper \\'e consider the prublern of calculating corrections to the potential of a one-di1ne11sioual 
singular oscillator (h = 2m = ;,;/2 = 1): 

V(x) = U(.c) + W(x) = x' + s(s + l)x-'. ( l i 

\vhich appear upon a change in spectral data (energy levels and norn1alization constants). Thi~ problem 
arises as a natural co1npletion of the earlier solved direct proble1n \\'ith the indicated porential [l-:3] Cltld 
the inverse problem for a one-di1nensio11al harmonic oscillator [4] (l-'(x) = x:?, -·x < .r: < x) anJ a radial 
oscillator [5] (V(r) = r 2 + /(/ + l)r- 2 , 0 < r < :x;). 

The inverse problem is an important part of any one-dimensional probletn, and its solution for a 
potential with singularities at .x = 0 and .r: = oo is by far not trivial. The general 1nethocl for solving 
inverse problems with an increasing potential (.z: - ±x, r _,..·'.Xi) \Vas found only a.s recelltly as the nineteeu
eighties [4. 6, 7]. 

Potentials \vith the singularity ,\.t-'.! have physical applications because they tnodcl the tran:::;forina
tions of the l}niverse at the initial stage of its development [8] and describe the spectroscopy of diatomic 
molecules [9]. Some other applications of these potentials are indicated in [10]. 

It is clear that a change in the experitnental Jata on energy le\·els or in inforntation about the tirne 
of the tunnel transition of the lTniverse to another state may result in a variation of the potential \\'ithout 
changing the singuL.4·ity at x = 0. Therefore not only theoretical but also applied problems require a solution 
of the inverse problen1 for the pivot potential ,1,.·ith the singularity Ax-'.!. One of the n-1ethods for solving 
this inverse problen1 is outlined in the present paper. 1'he n1ethod is applicable t.o the CdSe of ··any"" sinooth 
potential c·(.r) in (1). It is presented in Jet.ail only for the case of the seed porential ['(.r) ::::: .r 2 irt ( 1). for 
\\'hich there are closed analytical expressions for son1e corrections ro the potential (exact solutions). 

The stationary SchrO<linger equation (SE) for this systen1 possesses the \\"ell-kno\\'!l exact solutions 
(see [llL p. 158) and is thoroughly investigated (see, e.g., [12, 13]). Ho,vever. in our opinion. the correct choice 
of even solutions to the SE \Vith potential ( 1) \Vas justified only recently [:2. :J]. ·rhe even SE eigeufunctio1ts 
\\·ith lla1niltonian (1) have the fonn (.r > 0) 

, ( 1- 2s - E , ) 1/>+(x)=x-'exp{-x-/2}F 
4 

,-s+l/2,x-, (2) 

\Vhere Eis energy and F(a 1 b, .:) is the contluent hypergeometric function \\·hich is regular at.:= 0 (see [14:]. 
p. :3:21 ). For x __. +O, function (2) iS ·'normalized'' by the condition 

lim x' •l'+(x) = 1. 
x-+o 

1'he even energy levels are equidistant [12. 3]: 

En+=-2s+l+4n+. n+=O,l,2 1 • 
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(3) 

(4) 
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as well as the odd ones: 

whose wave functions (x > 0) 

En- =2s+3+4n_, 

1 2 ( 3 + 2s - E 3 , ) 1Ji_(x)=;i;'+ exp{-x/2}F 
4 

,s+2,x·, 

"normalized" by the condition 
lim (x-'l/>-(x))' = l, 

r-+o 

coincide with the radial wavefunctions for oscillator (1) (0 ~ x < oo) (see [11], p. 140). 
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(5) 

(6) 

(7) 

Using functions (2) and (6) one can construct pivot solutions to SE (1) and pass to the inverse problem 
of reconstructing the corrections to potential (1) following variation of the spectral data by the Gel'fan<l
Levitan (GL) method [15] as applied to the case of attractive potential [16]. To write down the GL integral 
equation it is necessary to construct the set of regular (pivot) solutions to SE (1) throughout the axis 
-co < x < co. For this purpose one must indicate a rule for the extension of any solution of the SE \Vith the 
singular potential W(x) = s(s + l)x- 2 in (1) across the point x = 0 (not necessarily with an even smooth 
potential [I ( x) in ( 1)). As such a rule ~ve suggest the local even (odd) extension to .i: < 0 for t hi: SE ;:;o! u ti on 
components satisfying the same boundary conditions for x,-.. +Oas the functions G+{.i:J anJ l"_(J:) i.2). 1(i:1 

in [l]. 
VVe choose x = -oo as a regular point. Then it is convenient to take as a reguh1r s0lutio11 r.-, SE 1, l i ri1c; 

solution that has at x - -:x. the san1e asyn1ptotic behavior as the SE solutions f•)r tl1e hnri11ouic o;:;cilLit·'r 
(s = 0) decreasing for x--.. -oo: 

'J E-l 
0~=exp{-x-/2}lxl,-, x--x. 

This means that the regular solution "0,..(.z:) to SE (1) is subject to the "normalization·· condition (an analog 
of conditions (3) and (7)) 

lim exp{x' /2}lxl- ";-' l/>,(x) = 1. 
r--oo 

(9) 

Such are the solutions to SE (1) (x < 0, and Eis arbitrary) 

? ( 1- 2s - E , ) i/>,(x) = lxl-' exp{-x-/2}U 
4 

, -s + 1/2, x· , ( 10) 

\vhere L~(a.b . .:) is the confluent hypergeon1etric function that is regular for:: - +x· l:-;•"'" :t-l) pp :~"2t 

and 325). 
On extending function (10) to x > 0 according to the above rule (\vith the change of the transition 

direction) and taking into account the relationship between the various solutions to SE (1) (see [14], p. 321) 
\Ve find 

c•,(x) = .4.+111+(x) + .-t_w_(x), x > 0, 

A+ = ( 3 ' E ) ( 1 • COS1rsf ~ f 2-s) 
;r 

.L = cos;rsr( i- 2~-E )r( ~ + s) · 

;r 

! 12 I 

For all energies outside the spectrum (4), (5), the function 1/<,(x) has an asymptotics increasing for 
x __,.+co: 

21i' _..€.±.!_ ') 

1Jl,(x)= _ r('+'•-E)r(t ,, 8 )x 'exp{x-/2}. 
CO:,irS 

4 4 

(13) 

On the spectrum ( 4), ( 5), the regular solutions have the form 

( 14) 

(15) 
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where L;:,(z) is the generalized Laguerre polynomial (see [14], p. 580). The asymptotics of 1/>,±(x) for 
x - +oo is of course decreasing: 

., S-1 
w,,,(x) = exp{-x-/2}x...,,.-. (16) 

In >vhat follo\vs it is convenient to index the \Vave functions and the energy levels 111 the order of 
increasing energy (the even and odd levels alternate). In this case we have (n+ = m/2, m = 0.2,4. 
n_ = (m - 1)/2, m=l,3,5 . ) 

Em= (2m+ lJ-2(-l)"'s, m = 0,1,2. 

The norn1alizar.ion con5tants C~ of regular functions (14) and (15) have the forrn 

(18) 

Using the pivot regular solutions (10), (11), (14), and (15) one can write down the GL integral equa
tion [1·5. 16] for a preassigned chang;e in the spectral data(£,, .. C'n1). The solution 10 the (;r_ 1:q1iclti.on ollo,\·,;; 
one to find corrections :..1~- to the potential and 11€\\' reg:ular (for the potentl~il 1: + :..11 ·) \\'ave function~ 

°Wr(.z:) (on the spectrum of Jm(x)). In the case of a. cl1ange in the finite number of spectral data, the GL 
equation is solved in quadratures. The expressions for .l\: and t::°m(.I.·) are givt:JL in [11.:i] (\\"lt,:ri~ rlie )1.J\\"i':' 

l!rn1t of integration 0 should be re-placed by -·x: in all the fonn11las). 
Of interest are tlie a::;yu1ptot.ics of ~m and of .l~- for .i.: - u, ±:v. rfo !ind tltt:!li. use is 1uade ,Jf 

asymptotics (8), (13). and ( 16) and formulas (2) and (6) for x - +O. 
\\:e describe the behavior of '0

1
n and ...l ~·r in son1e typical cases. 

1. • .\.. change in the normalization constant: Cm - Cm = Cm +~Cm. In this case 

;pm(.z:) = exp{-x2 /2}jxjCE--l)/2 = wm(x), x - -oo, 

;pm(x) = wm(x)Cm/Cm, x - +oo, 

0n(x) = t!•n(X), x - ±N. 
0(x) - !xi-' x - 0. 

The parity is not retained after Cm has been changed: 

uo±(-x) I' ±\;n±(.c), 

'1V = -4'1Cmexp{-x2 /2}jxjE, x-±xo. 
~V - lxli+''~(x). x - 0. m = 1, 3 .. ) . 

\\"here :(.r) is the signature t'tu1crion. 

x-0. 

The first term has the strongest singularity in correction (26). 

m=0.2.4. 

2. The inclusion of an additional level E \Vith normalization constant C Yields 

-4Cexp{-x2 }jxjE. x--x. 

4C.-1i ( E) sec( x) jx 1-( 1+2> J 
x -0, 

0 

l+C J ii•i(E,x)dx 

- -l. J; - +·x. 
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(19) 

(20) 

(21) 

(2~) 

( 2:~; 

(26\ 

··::.:-1 

(2S) 
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where A+(E) is determined by formula (12); for ,P,(E, x) see (10). 
3. The exclusion of the level Em leads to results close to (28), in \vhich, ho\vever, 

ilV = 4, x - +:xi. (29) 

4 .. ,\ shift of the level gives 
(30) 

Nate that, in contrast to the radial case ( 0 ~ r < oo ), all the results· of the inverse problen1 throughout 
the axis x (-00 < J..' < xi) have a trivial t\vofold degeneration dependent on the choice of the re;;ular point 
(-·x or +cc). The formulas obtained for s-.... 0 and .r: - ±ix. coincide \\"ith the ana.lo.~ou;:; forntulo.s for the 
one·din1ensi.onal oscillator (s = 0) partly presented in [-1] and fOr the r;;idial oscil!::i.r.or (.1; - x:) iu [-S] . 

• \s to the asyn1ptot.ics of .:.1l,· for .i: - 0 described by (26) atl<l (28). \\"lilcl1 i:, .·il::;o characteristic of 
cases 3 and 4, it is a ne'v nontrivial result. Note that the singularity in (28) (-1/:? < s < 1/2) is \\'enker 
than that of the pivot potential (1) (and of the related point potential (6V = -2sb(x)jxl-t [l]l. 

In the case \vhen the even functions of Hamiltonian ( 1) are for so1ne reason chosen in the forn1 of a 
combination of ¢+(x) and ij;_(x) in (2) and (6) (this possibility was discussed in[!]), the proposed method 
of solving the inverse problem can be easily generalized. 

IIo\\'ever. if the singular part of the potential has a .•veaker singularity than (1·1 f'.g; .. IC= ,\i.1::-". 

0 < v < 2 (see [1 i]). then the choice of an even SE solution .requires additional physical ceasons as con1pared 
to [2, 3}. Therefore the solution t.o the inverse problem preSented here cannot be extended auton1aticnl!y to 
the valnes of v less than 2. 1'his case will be investigated separately. 

The :;elution to the inverse probleni. found in this paper can also be used l"or :-0111e ')r lier por.~nria]::;: \\·ir h 
the singularity >.x- 2 . 

In this case the solution to the inverse rroblern can be arrlied for solvin~ r It·: J(orr.ewcg;-de \'rit;s 
equation \vith singular initial datil (l" .-... ,\.r-:.:, x - 0: ~· - 0, .i: - ±X·,I by n11cdogy •.1·irlt rhe 11011sinsular 

l{orte\veg-de Vries problem [13]. 
Thus, we have managed to fill one of the fe\V gaps in the classical problem of reconstructing the potential 

from spectral data and revealed, in so doing, the nontrivial behavior of .6. V for x - 0. 
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