Тогда получим: $\beta \approx 1,28 \cdot 10^{-2}$, $a \approx 3 \cdot 10^{-2}$, $S/S_0 \approx 3 \cdot 10^2$; $h \approx a^{-1} K_{e\mu}^2 (1 - K_{e\mu}^2)^{-1} \approx 10^8$ В/м, $c_0^e \approx 15$ пФ.

ЛИТЕРАТУРА

[1] Бичак И., Руденко В. Н. Гравитационные волны и проблемы их обнаружения. М., 1987. [2] Харкевич А. А. Теория электроакустических преобразователей. Волновые процессы. М., 1973. [3] Айнбиндер И. М. Входные каскады радиоприемников. М., 1973. [4] Филатов Г. А., Баев Е. Ф., Цымбалюк В. С. Малогабаритные низкочастотные механические фильтры. М., 1974. [5] Гусев А. В., Мележников И. В.//Вестн. Моск. ун-та. Физ. Астрон. 1991. 32, № 2. С. 33. [6] Рытов С. М. Введение в статистическую радиофизику. М., 1974. [7] Ландау Л. Д., Лифшиц Е. М. Теория упругости. М., 1987.

Поступила в редакцию 27.11.91

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1992. Т. 33, № 5

ФИЗИКА ТВЕРДОГО ТЕЛА

УДК 536.631

ВЛИЯНИЕ ФАЗОВОГО ПЕРЕХОДА ПОЛУПРОВОДНИК—МЕТАЛЛ НА ГИДРАТНЫЙ ПОКРОВ ПЛЕНОК ДИОКСИДА ВАНАДИЯ

А. В. Зотеев, Н. Л. Левшин, С. Ю. Поройков

(кафедра общей физики и молекулярной электроники)

Электрофизическим и масс-спектроскопическим методами исследовалось влияние фазового перехода полупроводник-металл на процессы гидратации и дегидратации поликристаллических пленок диоксида ванадия. В области температур, соответствующей фазовому переходу, а также в металлической фазе диоксида ванадия обнаружено возрастание десорбционной способности, а также ускорение адсорбционно-десорбционных процессов.

Адсорбционные и электрофизические свойства реальных поверхностей полупроводников-оксидов в значительной мере определяются состоянием гидратного покрова, который включает в себя гидроксильные группы ОН, а также молекулы воды, прочно связанные координационными $((H_2O)_c)$ и более слабыми водородными связями $((H_2O)_h)$ [1]. За изменение электрофизических параметров поверхности, его заряда ΔQ_s и поверхностной проводимости ответственны изменения – концентрации ОН-групп и молекул (H₂O) с на поверхности; молекулы (H₂O) к практически не влияют на эти параметры. В литературе подробно исследовано влияние термической и радиационной обработки оксидов в вакууме на состав гидратного покрова [1]. Вместе с тем нам неизвестны работы по влиянию фазового перехода в твердом теле на степень гидратации поверхности. Исследование этих процессов особенно актуально в связи с обнаруженным нами в [2] влиянием адсорбции паров H₂O на температуру T_c фазового перехода полупроводник-металл (ФППМ) в пленках VO2, когда их сопротивление R при Tc=340 K уменьшается на 4 порядка (рис. 1, кривая 1).

В настоящей работе мы исследовали процесс дегидратации пленки VO₂ в интервале температур от 300 до 385 К, включая область ФППМ, методом масс-спектроскопии. Проводился ступенчатый прогрев образца с интервалом 15 К и временем стабилизации температуры пленки на каждой ступеньке 30 мин. Анализ продуктов десорбции осуществлялся на монопольном масс-спектрометре MX-7301 в безмасляном вакууме 10⁻⁶ Па.

В качестве источника информации о состоянии гидратного покрова после адсорбции H_2O и термовакуумных обработок мы использовали изменения сопротивления ΔR и заряда ΔQ_s поверхности пленки, всегда измеряемые после охлаждения пленки до $T_0=298$ K, когда диоксид ванадия находится в полупроводниковой фазе. Измерения прово-

Рис. 1. Зависимость сопротивления пленки VO₂ (1) и выхода термодесорбции молекул H₂O (2) от температуры

дились в вакууме ~10⁻⁴ Па либо в атмосфере воды или кислорода. Изза высокой плотности поверхностных состояний измерение полной кривой эффекта поля — зависимости заряда поверхности ΔQ_s от ее потенциала Y_s — невозможно. Для оценки ΔQ_s и установления градуировочного соотношения между изменением ΔQ_s и ΔR мы исследовали подвижность эффекта поля $\partial \sigma_s / \partial \Delta Q_{ind}$, где σ_s — поверхностная проводимость, а ΔQ_{ind} — заряд, индуцированный на поверхности в эффекте поля [3]. Оказалось, что в исследованном диапазоне изменения Y_s величина ΔR практически линейно зависит от ΔQ_s . Знак изменения сопротивления образца при включении

выключении постоянного электрического поля показал, что на использованных образцах, имеющих объемную проводимость *n*-типа, присутствовал слой с инверсной проводимостью *p*-типа.

В работе использовались поликристаллические пленки диоксида ванадия толщиной ~ 0.3 мкм на сапфировых подложках. Электронномикроскопический анализ показал, что размер кристаллитов не превышал 1 мкм. В пленках содержится небольшое количество пор диаметром около 50 нм. Для проведения измерений ΔR и ΔQ_s на образцы напылялись алюминиевые контакты. В качестве диэлектрической прокладки в ячейке эффекта поля между прижимным электродом и пленкой использовалась слюда толщиной 10 мкм.

При нагреванни пленок VO₂ в вакууме при $T > T_c$ наблюдается заметная термодесорбция H₂O, CO, CO₂ и O₂. В данной работе мы остановимся на анализе спектров десорбции $Y_T(T)$ молекул H₂O. Как видно из рис. 1 (кривая 2), характерной особенностью кривой термодесорбции при выбранном режиме нагрева пленки является наличие максимума десорбции воды в области температур, близкой к области ФППМ. Он связан с десорбцией не только молекул H₂O, адсорбированных на поверхности образца, но и молекул воды, диффундирующих из объема пленки. Перестройка кристаллической решетки при ФППМ резко увеличивает эффективность диффузии в этом интервале температур. Действительно, с увеличением скорости нагрева T(t) максимум размывается и при переходе к режиму быстрого линейного нагрева исчезает.

Для выяснения механизма дегидратации в исследованной области температур мы после выдерживания образца при каждой температуре прогрева (рис. 2, *a*) охлаждали его до T_0 =298 К и измеряли относительное изменение сопротивления пленки $\Delta R/R_0$, где R_0 — сопротивление пленки при T_0 =298 К до ее термовакуумных обработок. Из рис. 2, *a* видно, что сопротивление пленки резко уменьшается (проводимость σ_s растет) в области T_h от 320 до 345 К и при $T_h \sim T_c$ проходит через минимум, далее растет. Аналогично изменяется и линейно связанная с ΔR величина ΔQ_s . Температурная область минимумов $\Delta R(T_h)/R_0$ и $\Delta Q_s(T_h)$ совпадает с максимумом термодесорбции молекул воды $Y_T(T)$ (см. рис. 1). Наличие экстремумов говорит о присут-

Рис. 2. а — Зависимость относительного сопротивления $\Delta R/R_0$ и заряда поверхности ΔQ_s (при $T_0=298$ K) пленки VO₂ от температуры предварительного прогрева образца в вакууме T_h . Время прогрева 20 (1) и 45 мин (2). б — Зависимость $\Delta R/R_0$ и ΔQ_s от T_h после адсорбции H_2 О. Давление паров воды p=2 Па. $T_0==298$ K. Время выдержки в парах воды 15 мин

Рис. 3. Зависимость относительного сопротивления $\Delta R/R_0$ пленки VO₂ от времени прогрева в вакууме. Температура прогрева T== 318 (1), 338 (2), 343 (3) (~T_c) и 353 K (4)

ствии двух конкурирующих процессов термодесорбции в области ФППМ. Уменьшение $\Delta R/R_0$ и ΔQ_s соответствует удалению с поверхности донорных молекул. Известно, что за положительное заряжение поверхности при адсорбции и отрицательное при десорбции из всех трех компонент гидратного покрова могут быть ответственны только координационно-связанные молекулы воды (H₂O) с. Это подтверждается многочисленными экспериментами, проведенными на монокристаллах Ge и Si, а также на различных оксидах [3]. Отрицательное заряжение при адсорбции и положительное при десорбции может быть связано с дегидроксилированием поверхности (десорбцией ОН-групп), которое всегда сопровождается перестройкой поверхности. Дегидроксилирование на внешней поверхности оксидов протекает при более высоких температурах (много выше T_c) [1]. Однако в тонких порах за счет взаимодействия ОН-групп образуется молекула H₂O, диффундирующая к поверхности. Этот процесс может активно протекать в области T~T_c, где происходит перестройка всей структуры пленки. Не исключено, что возрастающая ветвь на рис. 2, а в области ФППМ связана с этим процессом.

Заметим, что наклон кривой $\Delta R(T_h)/R_0$ в области температур T < < 340 К больше, чем наклон зависимости $Y_T(T)$. Величина Y_T включает в себя десорбцию не только молекул (H₂O)_c, ответственных за заря-

жение, но и молекул $(H_2O)_h$, которые не оказывают влияния на ΔQ_s , а следовательно, и на R. Ширина максимумов $Y_T(T)$ и $\Delta R(T_h)/R_0$, зарегистрированная в настоящей работе масс-спектрометрическим и электрофизическим методами, составляет ~20 К, что существенно шире области ФППМ (~3 К) на данных образцах (см. рис. 1, кривую 1). Это связано с высокой дефектностью приповерхностного слоя. Аналогичный вывод можно сделать из данных, полученных методами рассеяния света на неоднородностях поверхности [4] и комбинационного рассеяния света [5], регистрирующих образование новой фазы за 10—15 К до начала ФППМ в VO₂.

Рассмотрим теперь обратный процесс — адсорбцию паров воды (p=2 Па) при $T_0=298$ К, когда VO₂ находится в полупроводниковой фазе. Адсорбция приводила к росту сопротивления пленки. Зависимость $\Delta R(T_h)/R_0$, полученная в атмосфере паров воды (рис. 2, б) претерпевает излом при тех же температурах, при которых наблюдается максимум на кривых рис. 2, а. Все это говорит о влиянии ФППМ на адсорбционно-десорбционные свойства диоксида ванадия. Адсорбция молекул H₂O при комнатной температуре полностью восстанавливала сопротивление пленки за 15 ч. Столь большие времена прямо указывают на протекание медленных процессов диффузии и гидроксилирования в объеме пленки.

Дополнительную информацию о механизме адсорбционно-десорбционных процессов дало исследование кинетических зависимостей. Как видно из рис. 3, величина относительного сопротивления $\Delta R/R_0$ пленки VO₂ в полупроводниковой фазе ($T_0=298$ K) зависит от времени и температуры предварительного прогрева образца в вакууме. При $T_h < < T_c$ (полупроводниковая фаза) уменьшение сопротивления наблюдалось в течение нескольких часов. Повышение температуры термовакуумной обработки до $T_h \sim T_c$ — кривая 3 и $T_h > T_c$ (металлическая фаза) — кривая 4 приводило к значительному ускорению изменения $\Delta R(t)/R_0$ в начальной стадии десорбции (~ 10 мин). Появление длинновременных хвостов на зависимостях 2 и 4 подтверждает высказанное выше предположение о вкладе медленных стадий дегидроксилирования в порах с последующей диффузией молекул из объема пленки.

Как видно из рис. 4 *a*, вызванные адсорбцией паров воды изменения $\Delta R/R_0$ пленки VO₂ в полупроводниковой фазе резко возрастают в начальной стадии кинетики с увеличением температуры прогрева образца в вакууме (T_h). При $T_h > T_c$ на кинетических кривых появляется длинновременной хвост изменения $\Delta R/R_0$, что согласуется с соответствующими изменениями $\Delta R/R_0$ при дегидратации (см. рис. 3).

Адсорбция молекул H_2O на поверхности пленки VO_2 , подвергнутой длительной откачке при T_0 =298 К, приводила к появлению максимума на зависимости $\Delta R/R_0(t)$. В крупном масштабе этот участок кривой изображен на рис. 4, б. В работе [6] было показано, что максимумы на кинетических кривых заряжения поверхности полупроводника при адсорбции являются следствием двух процессов — образования новых поверхностных адсорбционных состояний и перезарядки уже имевшихся ранее (до адсорбции) «биографических» состояний. Предварительные термовакуумные обработки пленки при $T_h>330$ К, снижающие концентрацию «биографических» состояний (координационносвязанных молекул (H_2O)_с [3]), приводили к исчезновению максимумов на кинетических кривых (см. рис. 4, a).

Для сравнения мы изучили влияние адсорбции кислорода на сопротивление пленки VO₂ при той же температуре $T_0 = 298$ К. Из рис. 4, в видно, что знак заряжения поверхности при адсорбции акцепторных молекул О₂ противоположен по сравнению с адсорбцией донорных молекул H₂O, и влияние прогрева при $T_h \gg T_c$ на изменение $\Delta R/R_0$ пленки в полупроводниковой фазе практически отсутствует.

Рис. 4. Кинетика изменения относительного сопротивления $\Delta R/R_0$ пленки VO₂ при адсорбция молекул воды (a, δ) н кисло-рода (s); $T_0=298$ К, давление адсорбата p=2 Па. Температура предварительного прогрева $T_h=298$ (1), 333 (2), 342 (3), 380 (4) в 360 K (5) (6 — кривая 1 рис. 4, а в более крупном масштабе)

Из всего сказанного видно, что процессы дегидратации диоксида ванадия более активно протекают при вакуумных обработках пленки в области температур ФППМ и более высоких температур, когда образец находится в металлической фазе. Последнее связано с увеличением амплитуды колебаний атомов в металлической фазе [7]. Это согласуется также с ранее проведенными исследованиями, показавшими, что высокотемпературная фаза VO₂ является менее стойкой по отношению к УФ-облучению [8], электронной бомбардировке [9, 10] и ионной имплантации [11].

Авторы благодарят В. Ф. Киселева и П. К. Кашкарова за интерес к работе и полезные замечания.

ЛИТЕРАТУРА

[1] Кізеlev V. F., Кгуlov O. V. Adsorption Processes on Semiconductor and Dielectric Surfaces. Berlin, 1985. [2] Киселев В. Ф., Козлов С. Н., Лев-шин Н. Л., Смирнов Н. И.//ФТТ. 1988. 30, № 3. С. 924. [3] Кізеlev V. F., Кгуlov O. V. Electronic Phenomena in Adsorption and Catalysis. Berlin, 1987. [4] Гербштейн Ю. М., Смирнова Т. В., Чудновский Ф. А.//Письма в ЖЭТФ. 1979. 25. С. 446. [5] Аронов А. Г., Мирлин Д. Н., Решина И. И., Чудновский Ф. А.//ФТТ. 1979. 19. С. 193. [6] Козлов С. Н.//Изв. вузов, Физика. 1975. № 2. С. 116. [7] Мс Whan D. B., Магеzio М., Remeika J. P., Dernier P. D.// Phys. Rev. 1974. B10. Р. 490. [8] Левшин Н. Л., Порой-ков С. Ю.// Вести. Моск. ун-та. Физ. Астрон. 1990. 31. С. 93. [9] Леонов А. С., Подсвиров О. А.// Письма в ЖТФ. 1984. 10, № 17. С. 1046. [10] Аброян И. А., Подсвиров О. А.// Тр. Ленингр. политехн. ин-та. 1989. № 429. С. 61. [11] Ве Подсвиров О. А. // Тр. Ленингр. политехн. ин-та. 1989. № 429. С. 61. [11] Величко В. Я. / Письма в ЖТФ. 1980. 6, № 22. С. 1345.

Поступила в редакцию 09.01.92