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M. V. Kuzelev and V. A. Panin 

The paper is concerned with both linear and nonlinear theories of amplifying 
electromagnetic plasma waves in a transversely inhomogeneous beam-plasma 
system of a general form under conditions of the collective Cerenkov effect. The 
optimum length and efficiency of amplification1 as well as the output electro­
magnetic radiation power have been calculated analytically and numerically. 

In recent years, the advent of powerful plasma SHF amplifiers and electromagnetic radiation oscillators 
has aroused interest of researchers in the theory of transversely inhomogeneous beam-plasma systems[l-3]. 

Plasma electromagnetic waves are known to undergo amplification under conditions of the collective 
Cerenkov effect, when the beam and the plasma are well separated across a waveguide [4]. This is the 
situation that is considered below. A round metal waveguide with thin tubtllar beam and plasma inside is 
analyzed in detail. The nonlinear stabilization mechanism is shown to be determined by factors depending 
on the beam current. A general analytical solution to the problem is given (for arbitrary currents), and the 
most important amplifier characteristics are determined. 

For generality, first consider a waveguide of an arbitrary cross section, within which there are thin 
electron beam and plasma fully magnetized by a longitudinal magnetic field. The corresponding unperturbed 
densities have the form: 

no,= Sp6(r,_ - rb)n,. (1) 

Here rJ. is the coordinate across the waveguide, rb and rp determine the positions of the beam and the 
plasma, respectively, in the waveguide, and Sb and Sp are the beam and plasma cross section areas. 

In the boundary value problem of amplification of input oscillations ( z = 0), the nonlinear interaction 
of a thin beam and plasma under conditions of the collective Cerenkov effect is described by the following 
set of integro-differential equations [5]: 

dy 
~ = ,,, 

~ = (1+ µ11)'''{ ~ [ exp{-iy}( 1-iµ ~ )p- c.c.] 

+ ~v(cexp{-iy- i110{} + c. c.) }, 

dt {' } ~ = vpexp •110~ , 

2' 

p = .; j exp{iy} dyo, 

0 

(2) 

where pis the amplitude of beam charge density perturbations, e is the dimensionless amplitude determining 
the transverse component of the electric field of the plasma wave undergoing amplification, y and 1/ are the 
Lagrangian coordinates of electrons in the beam, 
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z is the coordinate along the waveguide axis, u is the velocity of an unperturbed beam, and 1' = ( 1 -
u2 /c2)-1/2. 

Set (2) has been obtained and studied in [6] in handling the initial value problem* for model systems. 
It depends on three parameters, viz., (a) the detuning 7/o, which characterizes the deviation of the phase 
velocity of an unperturbed plasma wave from the beam velocity u, (b) the heavy-current parameter µ, and 
( c) the quantity 11 determining the beam-plasma interaction conditions. For the transversely inhomogeneous 
be~-plasma a~plifier we are considering, these parameters have the form: 

1)0 = .!.(1-2- ), 
µ '" 

where for a waveguide of an arbitrary cross section 

w2 R2 So w2 R2 S '" = +,- -8 Ro(x), <>p = n s' Rp(x), 
U'Y w U")" w 

) ~ 1 'P~(r;) 
R;(x = L; k2 R2 + ,,2 -II'" 112' j = b, p, 

n=l l.n rn 

G( ) = ~ 1 l"n(r.)l"n(r,) 
" L; k2 R2 + ,,2 II'" 112 ' n=l 1.n rn 

wR 
x=-. 

"1' 

- a2 
a= R,Rp' 

(4) 

(5) 

Here R is the characteristic waveguide cross section radius, Sw is the cross section area, IPn (rj) are the 
waveguide eigenfunctions at the points the beam or the plasma occur, l\l"nll are the eigenfunction norms, 
and k.Ln are the transverse wave numbers. The dependence of the geometrical factors R; and G on x (in 
fact on the frequency w) is a consequence of the nonlinear dispersioii of beam and plasma waves. Later on 
the equations for R; and G will be written in an explicit form for the geometry that will be specified. 

The quantity Ci that determines v is the coupling parameter and characterizes the interaction between 
the beam and the plasma depending on their relative positions across the waveguide. For example, it follows 
from Eq. [5] that when the beam and plasma coordinates coincide, we have ii= 1 (strong coupling [5]), and 
when the beam and the plasma are well apart, and the collective Cerenkov effect takes place, then 

(6) 

Hereafter we assume inequality ( 6) to be. fulfilled. The parameter v may then be of the order of magnitude 
of unity. 

Note that Eqs. (2) were derived for a linear plasma. This approach is valid ifthe displacement of plasma 
electrons in the longitudinal electric field E, is small compared with the wavelength k; 1 "'u/w, that is, if 
Ap = (elE,l/mk,u 2 ) ~ 1 [5]. The criterion for plasma linearity written in dimensionless variables has the 
form: 

1 3/2 
.X = -a:l/2Ll,'I 

p 2 . 41' , (7) 

where e' = Ve+ i(l - iµdJde)p is proportional to the electric field longitudinal component. This is very 
well seen from the second equation of set (2), which by its sense includes just the longitudinal field. The 
numerical values of the criterion for plasma linearity will be given below. 

Set ( 2) has the following first integral: 

2' 

1 1· dyo µ2 2 µ 12 
2,,. v'I+Jiii + slPI + gl' = const, (8) 

0 

where the first term on the left-hand side is the change in the kinetic energy flux of beam electrons, and 
the second and third terms are the electromagnetic energy fluxes of beam and plasma waves, respectively. 

* That is why there are differences in signs between set (2) and equations from [5, 6]. 
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Considering that, at worst, the electromagnetic energy can only be extracted from plasma, let us introduce 
the efficiency of transformation of the kinetic energy of beam electrons into radiation energy, or amplification 
efficiency, in the form: 

K = ~(lol2 
- lool2

), (9) 

whereeo = ol<=O· 
For the geometry most interesting from the practical point of view (a round metal waveguide of radius 

R containing thin tubular beam and plasma),. we have <fin= Jo(k.Lnr), where k.Ln =µon/Rand µon are the 
roots of the zero-order Bessel function. The infinite sums in the geometrical factors are calculated using the 
Knezer-Sommerfeld formula [7], and Rb, fl,,, G, and ii can be written as 

(10) 

where /{o and Io are the Bessel functions of an imaginary argument, ab = rb/ R, ap = rp/ R, and rb and rp 
are the thin tubular beam and plasma radii, respectively. 

The heavy-current parameter µ, which depends on the beam density via ab and which determines the 
mechanism of amplification of plasma waVes, can be conveniently written through the beam current Jb and 
the limiting vacuum current Jo [5]: 

[ 
Jb 2(-y213 -1)a/2R,(z)]'/2 

µ= 4--y -- . 
Jo ')'2 - 1 R,(O) 

(11} 

In the limit of low frequencies (z < 1) and large')' values,µ= (4Jb/Jo)112. Note that if ii< 1 and the 
beam and the plasma are well apart across the waveguide, the beam transport conditions are determined 
by the following factors. If r, < r., the highest possible beam current corresponds to the limiting vacuum 
current for a waveguide with R = r,. The plasma then acts as a metal surface. If r, > r., the highest 
possible current for the beam transport is calculated by the model of two coaxial metal surfaces. Then 
Jmax - 2 - 3Jo. Our use of the notion of the limiting vacuum current of a thin tubular beam is to a large 
extent based on practice common to both vacuum and SHF electronics. 

In the linear approximation when o - eo exp(i6{), where according to (3) 6 = ( u/w)(2')'2 / µ)6k, and 
bk, is the dimensional amplification factor, set (2) yields the dispersion equation [4] 

[62 
- (1 + µ6)](6 + !)o) = -11

2
. (12) 

Using the term in square brackets in Eq. (12), we can easily find 

(13) 

- . : 
which determine the spectra of the slow and fast beam waves. In the boundary value problem, the sign "+" 
corresponds to the slow wave. For low-current beams, when Jb < Jo, we have 61,2 ~ ±1, and if Jb > Jo, 
61 "'µand 82 "'-1/µ [4]. 

Amplification under the collective Cerenkov effect conditions is known to be a wave-wave-type inter­
action. It occurs when the phase velocity of an unperturbed plasma wave vph is of the order of magnitude 
of the phase velocity of the slow beam wave v, or, using the variables of Eq. (4), 1Jo"' -81 • Note that a 
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strict equality corresponds to the highest amplification. Using the representation 6 = 61 + 6' in Eq. (12) 
then yields the imaginary part of the amplification factor: 

(14) 

Equality (14) holds if the inequality 
II< (4 + µ2)3/4 (15) 

is satisfied. Otherwise, the collective Cerenkov effect is impossible, and we have a transition from wave-wave 
to wave-particle interactions. 

With low-current beams (µ < 1 or Jo < J0 ) Eq. (14) is simplified, the amplification factor is written 
as [4] 

6 = 1- ivf,,/'i., (16) 

and inequality (15) transforms into 
(17) 

In the other limit when µ ~ 1 we have 

6 =µ-iv/,/ji (18) 

and the condition of applicability of Eq. (18) is 

(19) 

A nonlinear stabilization of amplification under conditions Of the collective Cerenkov effect is, as shown 
in [5], determined by three physical effects. Their competition is controlled by the parameters µ and v (or 
the beam current, Jb, and the coupling parameter, Ci). Consider the most interesting limits, when one of the 
possible mechanisms predominates. 

If 11 :S 1 (this does not mean that condition (6) breaks), then, given a fairly wide range ofµ variation 
(the important thing is preservation of inequality (15)), the amplification is stabilized as a result of capture 
of electrons by the field of the slow beam wave and of phase reversal [5]. Equations (2) can then only be 
analyzed numerically. The calculations were performed for the following fixed parameters: ')' = 2; R = 1.8 cm; 
r, = 0.9 cm (a, = 0.5); w, = 25 x 1010 s-1 ; w = 7.78 x 1010 s-1 (z = 2.7), and r0 = 1.44 cm (ao = 0.8). 
These parameters correspond to an actual experimental situation (8]. The beam current value was varied. 

If (Jo/ lo) = 0.1 (µ = 0.31 and 11 = 0.91), the optimum amplification length for an input power 
Po"' 180 kW is Zmax "'63 cm, Kmax "'23%, and the output radiation power is Pex "'200 MW. For a higher 
current when lo/ lo= 0.5 (µ = 0.7 and v = 0.79) and for the same input power Po, we have Zmax"' 52 cm, 
Kmax ""31%, and Pex "' 1300 MW. Lastly, if (lo/lo)= 1 (µ = 0.98 and II= 0.77), then Zmax"' 48 cm, 
Kmax "'4%, and Pex :::: 340 MW for Po"' 180 kW. The reason for this decrease in efficiency and, therefore, 
in output power was the use of a fixed frequency x in this series of calculations. The maximum amplification 
condition (ryo = -61) was therefore broken· when the current was increased. All of the calculations were 
performed with a"' 0.15, and the criterion of plasma linearity, Ap ~ 0.1, was satisfied. 

If 11 ~ 1, the amplification of plasma waves is stabilized by the effect of a nonlinear frequency shift 
irrespective of the µ value [9]. This corresponds to including only cubic nonlinear terms in Eqs. (2) and 
makes it possible to obtain an analytical solution to the problem [10]. Note that, depending on the beam 
current Jb (or the parameterµ), cubic nonlinearities have different origins. For low-current beams (Jb < J0 ), 

the nonlinear frequency shift is due in the first place to deceleration of the beam [5, 10, 11], whereas in the 
limit of high currents, the amplification stabilization is mainly determined by a change in the momentum 
or by the relativistic dependence of the frequency of Langmuir beam oscillations on their amplitude [6, 11]. 
With intermediate currents, both mechanisms contribute to the nonlinear amplification dynamics. 

Equations containing cubic nonlinearities alone are obtained by expanding the initial equations in 
electron trajectories and momenta as suggested in [10, 11]. Let us introduce the electron momentum 

(20) 
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and write the coordinate and the momentum of the electron in the form [10, 11]: 

Y =Yo+ w({) +ii({, Yo), liil < 1, 

p = (p) + (l/2)µ[A({) exp{-iy} + c. c.], 

Vol. ,f.7, No. 5 

(21) 

where w({) and (p) are the constant shift and the mean electron momentum, respectively, and ii and A({) 
are their oscillations. By substituting (20) .and (21) in Eqs. (2), applying the theory of residues to integrate 
these equations with respect to y0 , and expanding the integrated equations in the wave amplitudes with an 
accuracy to cubic nonlinearities inclusively we derive the following set of equations: 

dw 1 
d{ = 4 [ (µIPl 2 +1<12 - l<ol2) + 6µIAl 2], 

dp . [ 3 3 l elf. = -2• 1+8µ(µlpl 2 +1<12 - l<ol2) + 2µ 2IAI' A, 

dA i { . }( . d )- 1 { . } - =--exp -zw 1- zµ- p- -ve:exp -iw elf. 2 d{ 2 , 
(22) 

de . 
elf. + U)oe = vp, 

p=pexp{iw}. 

After eliminating A from set (22) and passing to slowly varying amplitudes e:' and p' with the help of the 
representation 

e: = e:' exp{-iryo{ - iw }, p = p' exp{-iryo{- iw} (23) 

we can rewrite Eqs. (22) in the form (primes omitted): 

do 
d{ = vp, 

dp .• v 
--i~p=- e:, 
elf. 2ryo + µ 

(24) 

D. _ ~ 2 2(µ~ - 4/3) - µryo(µryo - 2) I 12 - sry0 2ryo +µ p . 

Here~ is the rionlinear detuning caused by the nonlinear frequency shift, and ·T/o = -81. 
Solving set (24) is trivial; the solutions written in terms of elliptic functions are (p = IP! and c = le:I): 

2 _ 2 sn2 (y, r) 
P - Pmax 1 + (ci\.ax/ci}cn2(y, r), 

,2 
g2 _ max 

- 1 + (ci\.ax/<5)cil2(y, r)' 
(25) 

where 

e2 v 
r-1--0- y < 

- ti\.ax' = (4+µ2)1/4'' 
(26) 

fi v'i'( 4 + µ2)1/s 
Pmax = 

4V 3 ryo[2(4/3 - µryo) - µryo(2 - µryo)]'l 2 ' 

fi v'i2( 4 + µ 2) 3/• · 

<max= 
4V 3 ryo[2(4/3 - µryo) -µryo(2 - µryo)]'/2 · 

The distance at which the amplitudes p and t reach a maximum is determined by the equation 

{o = (4+µ2)1/4 ln(2v'2"max ), 
v co 

(27) 
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and the efficiency of the transformation of the beam kinetic energy into radiation energy and the equation 
for the output radiation power are 

me' 
Pex = -(')' - l)J,K. 

e 
(28) 

"'1ith low-current beams, when µ < 1, and the principal mechanism .of nonlinear stabilization is the 
deceleration of the beam, Eqs. (25) to (28) are simplified considerably: 

eo = v'2 In ( 2v'2 <max ) , 
v <o 

Pmox = 20 v'I', lmax = 2(2v'2)112v1/', (29) 

rn _1,,R,(x)(J')1/• 
Kmox = V' µv "' 1.5<> R,(O) Jo . 

For heavy-current beams, when µ > 1, and the nonlinear frequency shift is governed by the relativistic 
dependence of the frequency of Langmuir beam oscillations on the amplitude, Eqs. (25) through (28) take 
the form: 

v y=-e, .,;µ 
eo = .,fo In ( 2v'2 <max ) , 

v to 

P - 4 f!. v'/2µ-11/• < - 4 f!.v1/2µ-•I• 
max - v 3 ' max - v a· ' 

K _ 4 -7/2 -1/2 R,(O) Jo 
max - 3vµ "'<> .R,(x) J,. 

(30) 

Note that the validity of the analytical approach used in this work is substantiated by a direct numerical 
simulation of the initial set of equations (set (2)). By way of example, we plotted the spatial dynamics of IPI · 
(l<I behaves similarly) for the following system parameters: -y = 2; R = 1.8 cm; rp = 0.9 cm; r, = 1.44 cm; 
x = 4.5; wp = 25 x 1010 s-1; and J,/Jo = 3 (Fig. 1). The parametersµ and v are then equal to 1.48 and 
0.64, respectively. One can see that the solution has a "soliton" character in agreement with Eqs. (25), and 
IPmaxl"" 0.32. It follows from general analytical expression (26) that IPmaxl"' 0.34. Numerical solutions of 
this type for a simpler beam-plasma system were first obtained in [6]. 

1 .. 1 

0.3 

0.2 

0.7 

., Fig, 1 

Spatial dynamics of IPJ for J,/ Jo = 3. 

We will note in conclusion that transversely inhomogeneous beam-plasma waveguides under conditions 
of the collective Cerenkov effect can, as follows from the results obtained, be used to develop efficient 
amplification systems operating in the microwave region. 
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