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BRIEF COMMUNICATIONS

MODELING AND ANALYSIS OF THE ENERGY SPECTRA
OF s ELECTRONS GENERATED BY
ULTRARELATIVISTIC HADRONS

B. 1. Goryachev and N. V. Lin’kova

The authors present the results of mathematical modeling of an experiment de-
signed to determine the parameters of the electromagnetic structure of hadrons
by analyzing the energy spectra of § electrons generated by the hadrons.

In [1] the authors describe a method for studying the electromagnetic structure of hadrons by analyzing
the energy spectra of ¢ electrons generated by ultrarelativistic hadrons. The method allows determination
of not only the rms charge radius »,* but also a dimensicnless factor M which defines the density of electric
charge distribution in a hadron. The purpose of the analysis is to find the average energy § and the average
squared energy Q2 for the measured energy spectrum of § electrons™ '

If Lorentz factors 4 of hadrons obey the condition v 3 103, the following relations can be obtained {1]:

Sl ~ 'Q—: S2 ~ (_@)1/21
Sy = A1(M)—1nrg, (D)
= Az(M)/‘I"Q.

Here, the coefficients A; and As do not depend on rg and are a linear function of M. Thus ry and M can
be found with the help of (1) from the experimental values of @G and Q2.

Given below are the results of computations made to determine the required measurement accuracy
for @ and Q2. These computations help relate the relative measurement errors of Q, QZ2, rg, and M to the
statistical data used for experiment support and to errors in measuring the energy ).

The energy spectra of § electrons were simulated by the Monte Carlo method. The differential sectwn
of & electron generation was described by the expression valid for spinless relativistic hadrons:

de/dQ = ClQ™? - Q7' Q% 1GH(Q), , (2)

where Gg(Q) is the electrical form factor of a hadron, Q2 (7) is the kinematic limit energy @ transferred
to a 6 electron, and C is a @-independent factor. Calculations were made for ry = (.7, three values of the
Lorentz factor = (105, 10%, and 103}, and several values of Quin, which is the minimum energy of § electrons
in a spectrum. The model factor M was selected equal to 0.38, which corresponded to the exponential
distribution of an electric charge in & hadron [1]. The measurement accuracy level in the computations, o,
varied from 0 to 4 x 1072, Two alternatives were considered. First, a systematic measurement error that
yielded a negative or positive relative error o was assumed to occur. Second, a random perturbation was
introduced in ) simulated according to (2). This perturbation was computed by the Gaussian distribution
where o was relative fluctuation. In the mathematical experiment, arrays of values of Q and Q2 were created,

* In the text below, ry should be viewed as a dimensionless parameter which is numericaliy equal to the
rms charge radius of a hadron expressed in fermis.
** Dimensionless energy ¢} can be conveniently introduced through normalizing to the double rest energy
of an electron.
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Fig. 1
Results of calculation by the Monte Carlo method for ¥ = 10%, rq = 0.7, and Qmiz = 60;

N = 10° (open circles) and 5 x 10° (filled circles). Curves 1, 2, and 3 describe different
charge distributions in a hadron (see the text}. The dashed lines show curves of rg = const.
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"Fig. 2
Same as in Fig. 1 for y = 10%.

in which each pair of the above values resulted from averaging N indep endent simulations of Q. N was equal
to 10%, 10%, and 5 x 10°.

F:gures 1 and 2 show elements of such arrays in the Q) and Q2 coordinates. The open circles denote
N = 10%, and the filled circles stand for N = 5 x 10°. It can be seen that the scatter of the “experimental”
points decreases with an increase in the size N of the statistical sample. The figures also show a curvilinear
system of coordinates vy, M, the value of ry ranging from 0.5 to 0.9. Curves 1, 2, and 3 represent, respectively,
a uniform, an exponential, and a Yukawa-type [2] distribution of the electric charge.

1t is evident from the figures that when N 2 10% the computation points fall within the range of
physically admissible values of rp and M. With N £ 10* the scatter of the points is substantially larger
than the “physical” range, therefore, the statistical sample size of ~ 10* is obviously insufficient for this
experiment.

Note that while the distribution of () is Gaussian (i. e., symmetric with respect to (@), the distribution
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of Q% is noticeably asymmetric and has a tail toward larger values. For this reason, there may be considerable
deviations of Q? from the average value {@?) in the experiment.

Table 1

Y | 8Q/Q [ AQP/QT | Ar/ro | AM/M

108 0.030 0.24 0.11 0.18

104 0.026 0.26 0.10 0.32

108 0.016 0.08 0.19 >1

Table 2

o AQ/Q | AQY/Q? | Arg/ro | AM/M
—2x10"2 —-0.02 —0.04 0.12 0.13
—4 % 10~2 —0.04 ~(.08 ©0.23 0.21

Relative errors in the determination of Q, Q2, ro, and M for N = 10° and Qmin = 60 are presented in
Table 1. The “physical” range of the parameters ry; and M is reduced considerably with a decrease of the
Lorentz factor . This, however, reduces the scatter of the “experimental” points. As a result, transition
from ¥ = 10% to ¥ = 10® reveals the trend toward a decrease in the relative errors of ¢ and Q7 if the
sample size N is fixed. This is accounted for by an increase in Q2. (%) and, hence, in the role of the tail
of differential section (2) with a growth of v. However, the measurement errors for ro and M increase as v
decreases. Although each of these errors is a function of the errors of both Q and 2, it might be assumed
to a first approximation that

(Arofro) = (xmo) HAQ/Q),  (AM/M) = (sanro) HAQ?/QP), (3)

where x;, = 8InQ/8r and x5 = §In QZ/OM [1].

It follows from [1] that (s,rg)~! & 4-5 and (xpr70)~? =~ 0.8 for ¥ = 10°-10%. Accordingly, for v = 10*
we have {x1,70)”! & 15 and (#2pro)~! > 10. As a result, the estimates of Arg/ry and AM/M obtained
using formulas {3) are in satisfactory agreement with the results of Monte Carle calculations (see Table 1}.
Thus, with & fixed, the determination accuracy of ro and M depends on the factors #;,(v) and #2ar(y) that
characterize the sensitivity of the method for a given y. If v € 103, as can be seen from Table 1, quantitative
information on the parameter M cannot apparently be obtained.

Estimates of the measurement errors of Q, @2, o and M for other sample sizes are obtainable by the
rule ~ (N)~1/2. The above results refer to unperturbed measurements of Q (o = 0). Calculations show
that random errors in measuring Q (of the Gaussian type) are insignificant. Thus, with N = 10° the value
(AQ/D) is about 20 times as small as o, and (AQ?/Q?) ~ 0.2c. The systematic errors are

(AQ/Q)s = a, (AQ%/Q?%), = 2¢,
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where o may be either positive or negative (depending on the sign of AQ). Table 2 lists measurement errors
of @, Q ro, and M for the case of a systematic underestimation of the energy @ (o and AQ are negative).
The calculation parameters were as follows: rg = 0.7, @min = 60, v = 10%, and N = 10%. Using relations (1)
and considering the signs of the errors one can derive the following approximate relations:

(Aro/ro) m —5(AQ/Q),

— 4
(AM/M) = —2(1 ~ M)~ (AD?/QF). (4)

The estimates obtained by (4) agree with the results of the calculations by the Monte Carlo method. It can
be seen from (4) that a systematic underestimation (overestimation) of @ leads to an increase (decrease)
in rop and M as it is tantamount to a faster (slower) reduction in the electrical form factor Gg(Q) with
increasing trasferred energy Q.
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