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The authors present the results of mathematical modeling of an experiment de­
signed to determine the parameters of the electromagnetic structure of hadrons 
by analyzing the energy spectra of ti electrons generated by the hadrons. 

In [1] the authors describe a method for studying the electromagnetic structure of hadrons by analyzing 
the energy spectra of 6 electrons generated by ultrarelativistic hadrons. The method allows determination 
of not only the rms charge radius r0 • but also a dimensionless factor M which defines the density of electric 
charge distribution in a hadron. The purpose of the analysis is to find the average energy Q and the average 
squared energy Q2 for the measured energy spectrum of 6 electrons•"'. . 

If Lorentz factors /" of hadrons obey the condition /" ~ 103 , the following relations can be obtained [1]: 

s,-Q, 
Si= A1{M) - ln ro, 

S2 = A2(M)/ro. 

{l) 

Here) the coefficients Ai and A2 do not depend on ro and are a linear function of M. Thus ro and M can 
be found with the help of {l) from the experimental values ofQ and Q2 • 

Given below are the results of computations made to determine the required measurement accuracy 
for Q and Q2 • These computations help relate the relative measurement errors of Q, Q2, r 0 , and _M to the 
statistical data used for experiment support and to errors in measuring the energy Q. 

The energy spectra of 6 electrons were simulated by the Monte Carlo method. The differential section 
of 6 electron generation was described by the expression valid for spinless relativistic hadrons: 

(2) 

where GE(Q) is the electrical form factor of a hadron, Q::,axbl is the kinematic limit energy Q transferred 
to a 6 electron, and C is a Q-independent factor. Calculations were made for ro = 0.7, three values of the 
Lorentz factor f (105 , 104

, and 103
), and several values of Qmin, which is the minimum energy of 6 electrons 

in a spectrum. The model factor M was sefected equal to 0.38, which corresponded to the. exponential 
distribution of an electric charge in a hadron [l]. The measurement accuracy level in the computations, a, 
varied from 0 to 4 x 10-2 . Two alternatives were considered. First 1 a systematic measurement error that 
yielded a negative or positive relative error a was assumed to occur. Second, a random perturbation was 
introduced in Q simulated according to (2). This perturbation was computed by the Gaussian distribution 
where o: was relative fluctuation. In the mathematical experiment, arrays of values o{Q and Q2 were created) 

• In the text below, ro should be viewed as a dimensionless parameter which· is numerically equal to the 
rms charge radius of a hadron expressed in fermis . 

... Dimensionless energy Q can be conveniently introduced through normalizing to the double rest energy 
of an electron. 

70 



Mo&cow Univeraity 
Phyaic& Bulletin 

3 

z 

~.6 

Fig. 1 

Vol. 4-7, No. !5 

r0 =0.f 

5.0INO 

Results of calculation by the Monte Carlo method for 'Y = 105 , ro = 0.7, and Qmin = 60; 
N = 105 (open circles) and 5 x 105 (filled circles). Curves 1, 2, and 3 describe different 
charge distributions in a hadron (see the text). The .dashed lines show curves of ro = const. 
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Same as in Fig. 1 for 'Y = 104 . 

in which each pair of the above values resulted from averaging N independent simulations of Q. N was equal 
to 104, 105 , and 5 x 105 • 

Figures 1 and 2 show elements of such arrays in the Q and Q2 coordinates. The open circles denote 
N = 105 , and the filled circles stand for N = 5 x 105 • It can be seen that the scatter of the "experimental" 
points decreases with an increase in the size N of the statistical sample. The figures also show a curvilinear 
system of coordinates ro, M, the value of ro ranging from 0.5 to 0.9. Curves 1, 2, and 3 represent, respectively~ 
a uniform, an exponential, and a Yukawa-type [2] distribution of the electric charge. 

It is evident from the figures that when N ~ 105 the computation points fall within the range of 
physically admissible values of ro and M. With N ~ 104 the scatter of the points is substantially largu 
than the "physical" range, therefore, the statistical sample size of - 104 is obviously insufficient for this 
experiment. 

Note that while the distribution ofQ is Gaussian (i.e., symmetric with respect to (Q)), the distribution 
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of Q' is noticeably asymmetric and has a tail toward larger values. For this reason, there may be considerable 
deviations of Q2 from the average value (Q2) in the experiment. 

Table 1 

"! AQ/Q AQ'/Q' Aro/ro AM/M 
105 0.030 0.24 0.11 0.18 
10• 0.026 0.26 0.10 0.32 

103 0.016 0.08 0.19 >l 

Table 2 

"' AQ/Q AQ'/Q' Aro/ro AM/M 
-2 x 10-2 -0.02 -0.04 0.12 0.13 
-4 x 10-2 -0.04 -0.08 0.23 0.21 

Relative errors in the determination of Q, Q2 , ro, and M for N = 105 and Qmin = 60 are presented in 
Table 1. The "physical" range of the parameters ro and M is reduced consideraOly with a decrease of the 
Lorentz factor I· This, however, reduces the scatter of the "experimental'' points. As a result, transition 
from "! = 105 to "! = 103 reveals the trend toward a decrease in the relative errors of Q and Q2 if the 
sample ·size N is fixed. This is accounted for by an increase in Q~.,Jr) and, hence, in the role of the tail 
of differential section {2) with a growth of "f· However, the measurement errors for ro and M increase as-! 
decreases. Although each of these errors is a function of the errors of both Q and Q2 , it might be assumed 
to a first approximation that 

(3) 

where ><1r = 81nQ/8ro and "2M = 81nQ2/8M [l]. 
It follows from [l] that (x1rro)- 1 ""4-5 and (x2Mro)- 1 ""0.8 for"(= 105-104. Accordingly, for"!= 103 

we have (x1rro)-1 "" 15 and {x2Mro)-1 > 10. As a result, the estimates of Aro/ro and AM/M obtained 
using formulas (3) are in satisfactory agreement with the results of Monte Carlo calculations (see Table 1). 
Thus, with N fixed, the determination accuracy of ro and M depends on the factors X1r( 'l') and X2M('l') that 
characterize the sensitivity of the method for a given "!. If"! <\; 103, as can be seen from Table 1, quantitative 
information on the·;parameter M cannot apparently be obtained. 

Estimates of the measurement errors of Q, Q', r 0 and M for other sample sizes are obtainable by the 
rule - (N)- 11'. The above results refer to unperturbed measurements of Q (o = 0). Calculations show 
that random errors in measuring Q (of the Gaussian type) are insignificant. Thus, with N = 105 the value 
(AQ/Q) is about 20 times as small as<>, and {AQ2/Q2) ""0.2<>. The systematic errors are 

{AQ/Q), = <>, {AQ2/Q2), = 2<>, 
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where a may be either positive or negative (depending on the sign of AQ). Table 2 lists measurement errors 
of Q, Q'i, ro, and M for the case of a systematic underestimation of the energy Q (a and AQ are negative). 
The calculation parameters were as follows: ro = 0.7, Qm;n = 60, 'Y = 105 , and N = 105 • Using relations (1) 
and considering the signs of the errors one can derive the following approximate relations: 

(Aro/ro) ""-5(AQ/Q), 

(AM/M)"" -2(1- M)-'(AQ2/Q2). 
(4) 

The estimates obtained by ( 4) agree with the results of the calculations by the Monte Carlo method. It can 
be seen from (4) that a systematic underestimation (overestimation) of Q leads to an increase (decrease) 
in ro and M as it is tantamount to a faster (slower) reduction in the electrical form factor GE(Q) with 
increasing trasferred energy Q. 
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