ные результаты свидетельствуют о возможности использования этой модели для прогнозирования поведения твердых частиц малого размера в турбулентных суспензионных потоках.

Литература

[1] Галкин С. В., Силаев М. А., Пыркин Ю. Г. Деп. ВИНИТИ. № 6081-В88. М., 1986 [2] Пыркин Ю. Г., Галкин С. В., Силаев М. А.//Вестн. Моск. ун-та. Физ. Астрон. 1991. 32, № 1. С. 56. [3] Медников Е. П. Турбулентный перенос и осаждение аэрозолей. М., 1981. [4] Миггау S. Р.//Ј. Geophys. Res. 1970. 75, № 9. Р. 1647. [5] Н wang Р. О.//Ј. Нуdraulic Eng. 1985. 111, N 3. Р. 485. [6] Ландау Л. Д., Лифшиц Е. М. Гидродинамика. М., 1986.

> Поступила в редакцию 13.02.92

ВЕСТН. МОСК, УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1993. Т. 34, № 2

ФИЗИКА ТВЕРДОГО ТЕЛА

УДК 669.863

ВНУТРЕННЕЕ ТРЕНИЕ СПЛАВОВ ГАДОЛИНИЙ — Диспрозий в области низких температур

А. М. Тишин, О. А. Шипилов

(кафедра общей физики для естественных факультетов)

Проведено изучение модуля Юнга E и внутреннего трения Q^{-1} сплавов гадолиний—диспрозий в интервале температур 4,2—380 К. Установлено, что увеличение концентрации Gd приводит к сглаживанию максимума Q^{-1} в области существования ферромагнитного упорядочения при $T \approx 37$ К. Построена магнитная фазовая диаграмма системы.

Изучение модулей Юнга Е и внутреннего трения Q⁻¹ в веществах, обладающих магнитной структурой, представляет значительный научный и технический интерес, поскольку, с одной стороны, данные величины крайне чувствительны к трансформации магнитного упорядочения, а с другой, — определяют степень пригодности материалов для различных технических устройств.

В работе [1] проведено экспериментальное исследование модуля Юнга и внутреннего трения в поликристаллах Dy различной чистоты. Обнаружено, что в области низких температур наблюдается гигантский максимум Q⁻¹≈2·10⁻². Анализ экспериментальных данных позволил авторам работы [1] предположить, что данный максимум внутреннего трения может быть обусловлен следующими механизмами: 1) смещением под действием упругих напряжений границ доменов; 2) вращением векторов спонтанной намагниченности относительно осей легкого намагничивания в базисной плоскости.

Целью настоящей работы было получение дополнительной информации о данном низкотемпературном релаксационном процессе. В работе проведено исследование температурных зависимостей модуля Юнга E(T) и внутреннего трения $Q^{-1}(T)$ высокочистых поликристаллических образцов сплавов $\mathrm{Gd}_x\mathrm{Dy}_{1-x}$ при x, изменяющемся в пределах от 0 до 1, в температурном диапазоне 4.2—380 К. Образцы были изготовлены в Институте металлургии им. А. А. Байкова методом дуговой плавки в инертной атмосфере. После плавления образцы подвергались отжигу при T=700 °C в течение 5 ч. Химический анализ образцов показал, что содержание газообразных примесей не превышает норму для дистиллированных образцов. Суммарное содержание металлических примесей не превышало 0,001 вес. %. Изгибные колебания консольно закрепленного образца возбуждались электростатическим образом и поддерживались с помощью электромеханической обратной связи. Разрыв цепи обратной связи приводил к затуханию колебаний образца, число которых между двумя амплитудными порогами, определяемыми дискриминатором, подсчитывалось электронным счетчиком. Точность измерения Q^{-1} составляла 2—3 %. Более детальное описание методики эксперимента дано в [2].

Основное внимание в измерениях E и Q^{-1} уделялось особенностям поведения этих параметров в районе фазовых переходов ферромагнетизм (ΦM) — антиферромагнетизм ($A\Phi M$) при $T=\Theta_1$ и антиферромагнетизм — парамагнетизм (IIM) при $T=\Theta_2$, а также в низкотемпературной области аномального поведения Q^{-1} . Измерения проводились при нагреве образдов от 4,2 до 380 K в отсутствие магнитного поля. Предварительно образцы медленно (~2 К/мин) охлаждались до температуры жидкого гелия.

На рис. 1 и 2 представлены температурные зависимости E(T) и $Q^{-1}(T)$ для системы Gd_xDy_{1-x} . Частоты изгибных колебаний образцов при комнатной температуре составляли: для x=1 v=830 Гц; x=0,7 v=1950 Гц; x=0,6 v=1195 Гц; x=0,5 v=1190 Гц; x=0,25 v=2050 Гц.

В парамагнитной области температур во всех образцах наблюдается дислокационный пик внутреннего трения типа Хасигути [1].

Рис. 1. Температурные зависимости модуля Юнга E поликристаллических сплавов $Gd_x Dy_{1-x}$: x=0,25 (1), 0,5 (2), 0,7 (3) и 1 (4)

Как видно из рисунков, в точке магнитного фазового перехода в ФМ-состояние в Gd при $T = \Theta_c$ происходит незначительное увеличение модуля Юнга и наблюдается максимум внутреннего трения на фоне плавного роста величины Q^{-1} при повышении температуры. Необходимо отметить также аномальное поведение модуля Юнга и внутреннего трения в области спин-переориентационного перехода при $T = T_{sr} \approx 220$ К, а также при $T \approx 120$ К. Аномальное поведение модуля Юнга, внутреннего трения и начальной магнитной восприимчивости в окрестности второй температуры отмечалось ранее в работах [3, 4]. В [3] предполагается, что данные особенности связаны с изменением характера магнитного упорядочения гадолиния в данном температурном регионе.

В образцах с концентрацией гадолиння x <0,5 появляются дополнительные аномалии модуля Юнга и внутреннего трения, связанные с наличием в данной концентрационной области фазового перехода ФМ—АФМ. В окрестности этого перехода имеет место резкое уменьшение модуля Юнга и рост внутреннего трения.

На основе наших экспериментальных данных по E(T) и $Q^{-1}(T)$ построена магнитная фазовая диаграмма системы, представленная на рис. 3. Как видно из рис. 3, полученная диаграмма достаточно хорошо совнадает с магнитными данными (см., напр., [5, 6]).

напр., [5, 6]). Рассмотрям более детально данные по E и Q^{-1} в ферромагнитной области при $T < \Theta_1 = 90$ К. Модуль Юнга в данном температурном интервале вначале заметно Рентгеновский анализ двойных интерметаллидов $ErMn_2$ и $TbMn_2$ показал, что они являются однофазными. Кристаллическая структура $ErMn_2$ изотипна структуре фазы Лавеса $MgZn_2$ (пр. гр. $P6_3/mmc-D_{6h}^4$). Элементарная ячейка содержит 12 атомов и имеет параметры: $a=5,273\pm0,005$ Å и $c=8,632\pm0,005$ Å; c/a=1,633, что соответствует идеальному отношению для гексагональных плотноупакованных структур. Кристаллическая структура интерметалляда $TbMn_2$ изотипна структуре фазы Лавеса $MgCu_2$ (пр. гр. $Fd3m-O_h^7$). Элементарная ячейка содержит 24 атома и имеет параметра. Акаких-либо дополнительных максимумов на лифрактограммах интерметаллядов $ErMn_2$ и $TbMn_2$, не относящихся к гексагональной или кубической фазам, не обнаружено.

Рис. 2. Кривая концентрационной зависимости объема, приходящегося на формульную единицу, для сплавов системы $Er_{1-x}Tb_xMn_2$

Рис. 3. Отношение интегральных интенсивностей для максимумов 103 и 110

Анализ рентгеновских дифрактограмм сплавов системы $Er_{1-x}Tb_xMn_2$ (рис. 1) показал, что при изоморфном замещении 10% атомов эрбия атомами тербия (x = = 0,1) структура и фазовый состав сплава не меняются, т. е. сплав остается рентгеновски однофазным и изоструктурным интерметаллиду $ErMn_2$.

На дифрактограммах сплава состава x=0,12 присутствуют все максимумы, характерные для гексагональной структуры типа C14, но ширина и относительная интенсивность некоторых из них изменилась (максимумы 103, 200, 201 и др.). Подобная трансформация дифракционных картин обнаруживается и в сплавах системы $Er_{1-x}Tb_xMn_2$ составов x=0,17; 0,20 и 0,25.

Дифрактограммы сплавов составов 0,3«х«0,8 по числу, положению, ширине и относительной интенсивности максимумов полностью соответствуют дифрактограмме интерметаллида TbMn₂, т. е. эти сплавы рентгеновски однофазны и изоструктурны кубической фазе Лавеса C15.

Таким образом, из приведенного выше следует, что сплавы системы $Er_{1-x}Tb_xMn_2$ в области составов $0 \ll x \ll 0,1$ обладают гексагональной структурой типа C14, а в области $0,3 \ll x \ll 1,0$ — кубической типа C15. Сплавы в области промежуточных концентраций $0,12 \ll x \ll 0,25$ можно рассматривать как двухфазные, состоящие из смеси фаз C14 и C15.

Основное внимание в измерениях E и Q^{-1} уделялось особенностям поведения этих параметров в районе фазовых переходов ферромагнетизм (Φ M) — антиферромагнетизм ($A\Phi$ M) при $T=\Theta_1$ в антиферромагнетизм — парамагнетизм (ПМ) при $T=\Theta_2$, а также в низкотемпературной области аномального поведения Q^{-1} . Измерения проводились при нагреве образцов от 4,2 до 380 K в отсутствие магнитного поля. Предварительно образцы медленно (~2 K/мин) охлаждались до температуры жидкого гелия.

На рис. 1 и 2 представлены температурные зависимости E(T) и $Q^{-1}(T)$ для системы Gd_xDy_{1-x} . Частоты изгибных колебаний образцов при комнатной температуре составляли: для x=1 v=830 Гп; x=0,7 v=1950 Гц; x=0,6 v=1195 Гц; x=0,5 v=1190 Гц; x=0,25 v=2050 Гц.

В парамагнитной области температур во всех образцах наблюдается дислокационный пик внутреннего трения типа Хасигути [1].

Рис. 1. Температурные зависимости модуля Юнга E поликристаллических сплавов Gd_xDy_{1-x} : x=0,25 (1), 0,5 (2), 0,7 (3) и 1 (4)

Как видно из рисунков, в точке магнитного фазового перехода в ФМ-состояние в Gd при $T = \Theta_c$ происходит незначительное увеличение модуля Юнга и наблюдается максимум внутреннего трения на фоне плавного роста величины Q^{-1} при повышении температуры. Необходимо отметить также аномальное поведение модуля Юнга и внутреннего трения в области спин-переориентационного перехода при $T = T_{sr} \approx 220$ K, а также при $T \approx 120$ K. Аномальное поведение модуля Юнга, внутреннего трения и начальной магнитной восприимчивости в окрестности второй температуры отмечалось ранее в работах [3, 4]. В [3] предполагается, что данные особенности связаны с изменением характера магнитного упорядочения гадолиния в данном температурном регионе.

В образцах с концентрацией гадолиния $x \ll 0.5$ появляются дополнительные аномалии модуля Юнга и внутреннего трения, связанные с наличием в данной концентрационной области фазового перехода $\Phi M - A \Phi M$. В окрестности этого перехода имеет место резкое уменьшение модуля Юнга и рост внутреннего трения.

На основе наших экспериментальных данных по E(T) и $Q^{-1}(T)$ построена магнитная фазовая диаграмма системы, представленная на рис. 3. Как видно из рис. 3, полученная диаграмма достаточно хорошо совпадает с магнитными данными (см., напр., [5, 6]).

Рассмотрим более детально данные по E и Q^{-1} в ферромагнитной области при $T < \Theta_1 = 90$ К. Модуль Юнга в данном температурном интервале вначале заметно

Рис. 2. Температурные зависимости внутреннего трения Q^{-1} поликристаллических сплавов $\mathrm{Gd}_{x}\mathrm{Dy}_{1-x}$: x=0.25 (1), 0,5 (2), 0,6 (3) и 0,7 (4). На вставке — Q^{-1} для чисто-го Gd

Рис. 3. Магнитная фазовая диаграмма системы сплавов Gd_zDy_{1-x}: *1*— данные настоящей работы; 2 — данные работы [6] возрастает, а затем при $T \approx 15$ —30 К выходит на константу. Причины подобного поведения кривых E(T) проанализированы в [1, 6]. Увеличение концентрации Gd приводит к уменьшению скачка модуля в точке θ_1 .

Из рис. 2 видно, что в окрестности температуры 40 К на кривых Q^{-1} наблюдается гигантский максимум. Установлено, что величина этого максимума сильно зависит от частоты измерения v. Поскольку вследствие различной зависимости v(T)частоты, на которых проводились измерения, в области низких температур отличались при изменении концентрации Gd, то проследить зависимость Q^{-1} от x представлялось возможным только на качественном уровне. Отметим, что максимум внутреннего трения при низких температурах в исследованных сплавах наблюдался даже при малой концентрации Dy, хотя величина пика Q^{-1} при этом сильно уменьшалась. Пик внутреннего трения практически не смещался по температуре и приблизительно соответствовал температуре 40 К. В чистом Gd этот максимум нами не обнаружен.

Таким образом, полученные результаты указывают на то, что данный максимум зв основном связан с наличием в сплавах ионов Dy и может быть обусловлен вращением под действием упругих напряжений векторов спонтанной намагниченности относительно осей легкого намагничивания.

Авторы выражают благодарность О. Д. Чистякову за предоставление образцов .для исследования.

ЛИТЕРАТУРА

[1] Бурханов Г. С., Никитин С. А., Тишин А. М. и др.//Вестн. Моск. ун-та. Физ. Астрон. 1993. 34, № 2. С. 46. [2] Шубин В. В.//Автореф. дис. ... канд. «физ.-мат. наук. М. (МГУ), 1986. [3]. Никитин С. А., Спичкин Ю. И., Тишин А. М.//Вестн. Моск. ун.-та. Физ. Астрон. 1992. 33, № 5. С. 88. [4] Бодряков В. Ю., Никитин С. А., Тишин А. М.//ФТТ. 1991. 33, № 7. С. 2233. [5]. Никитин С. А. Магнитые свойства редкоземељных металлов и их сплавов. М., 1989. [6] Левитин Р. З.//Автореф. дис. ... канд. физ.-мат. наук. М. (МГУ), 1962.

Поступила в редакцию 03.07.92

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1993. Т. 34, № 2

УДК 669.866.018:448.7

МОРФОТРОПНЫЙ ФАЗОВЫЙ ПЕРЕХОД В СПЛАВАХ КВАЗИБИНАРНОЙ СИСТЕМЫ Ег1-xTb_xMn₂

А. С. Илюшин, И. А. Никанорова, М. Аль-Дервиш *), Ши Лей **), Дзо Гуэнь **)

(кафедра физики твердого тела)

Методом рентгеновской дифрактометрии изучен морфотропный фазовый переход в сплавах системы Er_{1-x}Tb_xMn₂. Установлено, что при изоморфном замещении атомов эрбия атомами тербия структура C14 трансформируется в структуру C15 путем образования в гексагональной плотной упаковке дефектов двух типов.

В настоящей работе изучалось влияние изоморфного замещения атомов эрбия атомами тербия на стабильность гексагональной плотноупакованной фазы Лавеса С14 в квазибинарной интерметаллической системе Er_{1-x}Tb_xMn₂.

Образцы для исследований выплавлялись из металлов чистотой 99,99% в индукционной нечи в атмосфере аргона методом бестигельной плавки [1]. Все слитки переплавлялись по 3—4 раза, после чего запаивались в кварцевые ампулы, наполненные аргоном, и подвергались гомогенизирующему отжигу при 950 °C в течение двух недель. Образцы квазибинарной системы Ег_{1-x}TD_xMn₂ имели следующие составы по x: 0; 0,1; 0,12; 0,15; 0,17; 0,20; 0,22; 0,25; 0,3; 0,4; 0,6; 0,8; 1,0.

Порошки для рентгеновского исследования получали путем растирания кусочков сплава в агатовой ступке под слоем этилового спирта. Рентгеновское исследование проводилось на дифрактометре ДРОН-1М в фильтрованном излучении от медного анода.

*) Сирия.

**) Китай.