татов анализа спектра фотонейтронов (угловые и энергетические распределения) видно, что в данном подходе удается неплохо воспроизвести экспериментальные спектры фотонейтронов только с учетом спинов в рамках квантового формализма СМКП, не содержащего свободных параметров и не использующего величины сечения обратной реакции при расчете спектра эмиссии нейтронов. Предложенный формализм СМКП при дополнительном учете изотопического спина может быть использован для описания спектра фотонейтронов в (у, р).

ЛИТЕРАТУРА

[1] Лукьянов В. К., Селиверстов В. А., Тонеев В. Д.//Ядерная физика. 1975. 21, № 5. С. 992. [2] Живописцев Ф. А., Ишханов Б. С., Орлян В. Н., Шведунов В. И.//Ядерная физика. 1977. 26, № 4. С. 754. [3] Живописцев Ф. А., Кэбин Э. И., Сухаревский В. Г. Предравновесные ядерные реакции. Ч. III. М., 1986. [4] Живописцев Ф. А., Шитикова К. В., Лукашев А. В.//Ядерная физика. 1976. 23, № 3. С. 557. [5] Zhivopistsev F. A., Shitikova K. V.//Czech. J. Phys. 1979. B29. Р. 1200; Deb A. K., Zhivopistsev F. A.//Czech. J. Phys. 1984. B34. Р. 1297. [6] Bertsch G. F., Bortignon P. F., Broglia R. A.//Rev. Mod. Phys. 1983. 55, N 1. Р. 287; Bertrand F. E. //Nucl. Phys. 1981. A384. Р. 129. [7] Kalka H., Seeliger D., Zhivopistsev F. A.//Z. f. Phys. A: A. & N. 1988. 329. Р. 331. [8] Dietrich S., Berman B.// Atomic Data and Nuclear Data Tables. 1988. 38. Р. 199. [9] Лепесткин А. И.// Ядерная физика, 1968. 8. № 3. С. 540 [10] Зацепко Г. Н., Игонин В. В., Лазарева П. Е., Лепесткин А. И.//Ядерные реакции при малых и средних энергиях: Tp. II Всесоюз. конф. М., 1960. С. 479.

Поступила в редакцию 08.06.92

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1993. Т. 34, № 3

РАДИОФИЗИКА

УДК 621.385.69

ЭЛЕКТРОСТАТИЧЕСКИЕ ОНДУЛЯТОРЫ ДЛЯ ФОРМИРОВАНИЯ ВИНТОВЫХ РЕЛЯТИВИСТСКИХ ЭЛЕКТРОННЫХ ПУЧКОВ

А. Ф. Александров, В. А. Кубарев, А. В. Луговской (кафедра физической электроники)

Для формирования винтовых электронных пучков предлагается использовать электростатические ондуляторы с резонансным ведущим магнитным полем. Развита аналитическая методика для расчета и оптимизации параметров плоских конструкций с плоскостью зеркальной симметрии.

Винтовые электронные пучки широко применяются для генерации и усиления электромагнитного излучения в устройствах с поперечным взаимодействием — от гиротронов до мазеров и лазеров на свободных электронах [1—3]. Наиболее часто для их формирования используются магнетронно-инжекторные пушки [1] и магнитные ондуляторы различных конструкций [3]. Еще одна возможность заключается в использовании электростатических ондуляторов (ЭСО), создающих в области транспортировки электронного пучка пространственно-периодическое электрическое поле, поперечное к направлению ведущего магнитного поля. При этом оказывается, что использование режима резонансной накачки, когда релятивистская циклотронная частота электронов близка к их баунс-частоте в ондуляторе, позволяет существенно снизить требуемую напряженность электрического поля и сделать ЭСО технически реализуемыми и перспективными для формирования винтовых электронных пучков, в том числе при релятивистских энергиях частиц. Представленная ниже методика дает возможность аналитически исследовать распределение поля и оптимизировать необходимые характеристики плоских ЭСО.

ЭСО представляет собой периодическую систему проводящих электродов, на которые подано необходимое напряжение. Наиболее интересны конструкции с разноименными соседними электродами и плоскостью зеркальной симметрии, в которой транспортируется ленточный или нитевидный электронный пучок. При этом в силу симметрии потенциал равен нулю на границах полубесконечных полос шириной, равной половине периода ЭСО, содержащих по одному электроду. Нахождение потенциала математически представляет собой задачу Дирихле с граничными условиями на электродах и, как правило, при заданной их поверхности возможно только численными методами. Предлагаемая методика состоит в следующем: если известно подходящее решение для потенциала в указанной области, то любая эквипотенциальная поверхность может быть выбрана в качестве формы электрода. Этот подход существенно облегчает исследование и оптимизацию рассматриваемых конструкций ЭСО.

Для построения подходящих комплексных потенциалов известны два основных способа — использование техники конформных отображений и рассмотрение периодических систем линейных (точечных в поперечной плоскости) зарядов [4—6]. В первом случае для нахождения решения задачи Дирихле можно выбрать один из известных потенциалов для верхней (вспомогательной) полуплоскости w, а затем применить ее конформное отображение Шварца—Кристоффеля на полубесконечную полосу комплексной плоскости z=x+iy вида w=ch(kz). Во втором случае задача состоит в нахождении функции комплексной переменной z, имеющей в точках расположения источников z_n такие же полюсы, как и комплексный потенциал одиночного заряда F= $=-q \ln (z-z_n)$. В частности, это достигается использованием потенциала вида

$$F = -\sum_{n} q_{n} \ln [\sin k (z - z_{n})], \quad k = \frac{2\pi}{d} = \frac{\pi}{a}, \quad d = 2a, \quad (1)$$

где q_n имеет смысл линейной плотности заряда, а суммирование проводится по зарядам, расположенным на половине периода ондулятора *d*. Скалярный потенциал φ получается выделением действительной части: $\varphi = \operatorname{Re} F$.

«Идеальный» ЭСО

При исследовании динамики электронов удобно использование модели «идеального» ондулятора, потенциал и электрическое поле которого являются синусоидальными по продольной координате *y*, совпадающей с направлением движения электронов и магнитного поля:

$$\varphi = \psi \operatorname{sh}(kx) \sin(ky). \tag{2}$$

Если потенциал в точке $x=x_1$, y=d/4 обозначить φ_0 , то для константы ψ получим $\psi=\varphi_0/\operatorname{sh}(kx_1)=\varphi_0H(x_1)$. Такое распределение потенциала может быть получено в периодической системе полубесконечных электродов, поверхности которых задаются уравнением $\operatorname{sh}(kx) \sin(kz) = \operatorname{sh}(kx_1)$, а их потенциал равен φ_0 . При этом плоскость x=0 является плоско-

стью зеркальной симметрии, а зазор между верхней и нижней системами электродов равен $2x_1$. Ясно, что «идеальный» ЭСО практически нереализуем, так как при больших х зазор между соседними электродами стремится к нулю, а напряженность поля — к бесконечности. Однако в реальных ондуляторах в силу периодичности потенциал можно разложить в ряд по пространственным гармоникам, причем в интересующем нас случае резонанса движение частиц определяет только первая из них, выражение для которой совпадает с (2). Отличие состоит только в коэффициенте Н, который равен отношению амплитуды первой пространственной гармоники электрического поля к величине $k\phi_0$ и зависит от конструкции реального ЭСО (естественно называть его формфактором ЭСО). Видно, что при малых зазорах ($kx_1 \ll 1$) величина формфактора монотонно и неограниченно возрастает: $H_i =$ $=1/sh(kx_1) \approx 1/kx_1$, что справедливо для любых ЭСО. Минимальная ширина зазора определяется толщиной электронного пучка h и максимальным ларморовским радиусом электронов R. В рассматриваемом случае резонансной накачки получим оценку $kR = kv_x \gamma / \omega_B = v_x / v_y = g$, где д — требуемая закрутка пучка. Таким образом, минимальная ширина зазора ограничена значением

 $kx_1 > kx_{1m} = kh/2 + g$.

ЭСО с электродами типа полуплоскостей

s, $t = [(c \pm \sinh x \sin y)^2 + (\cosh x \cos y)^2]^{\frac{1}{2}}$.

Выберем в качестве вспомогательного на плоскости w потенциал, создаваемый двумя компланарными полуплоскостями, тогда на плоскости z получим следующий комплексный потенциал:

 $F = A i \operatorname{arsh}[\operatorname{ch}(kz)/c].$

В дальнейшем для сокращения записи в аргументах функций множитель k будем опускать; это соответствует переходу к единице длины, в которой период d равен 2π . Соответствующий скалярный потенциал имеет вид

$$\varphi(x, y) = A \arcsin \frac{2\sin x \sin y}{s+t}, \qquad (3)$$

Здесь ось у направлена в плоскости симметрии системы; константы
$$A$$

и с имеют смысл заряда и положения порождающих поле источников.
Нетрудно убедиться, что потенциал (3) удовлетворяет уравнению Ла-
пласа и нулевым граничным условиям (при $x=0$ и $y=m\pi$, $m=0$,
 ± 1 , ...). Он порождает на плоскости (x, y) двухпараметрическое семей-
ство эквипотенциальных поверхностей, из которых можно выбрать под-
ходящую форму электродов ЭСО. В качестве параметров удобно ис-
пользовать потенциал электрода φ_0 и его геометрические размеры: x_1 —
полуширину рабочего зазора, y_0 — полуширину зазора между соседни-
ми электродами (рис. 1). Тогда получим

 $A = \varphi_0 / y_0$, $c = \sinh x_1 / \sin y_0$.

Ширина электрода L выражается через величину y_0 : $L/a=1-2y_0/\pi$. Уравнение для его границы определяется из условия $\varphi(x, y) = \varphi_0$ и приводится к виду

$$\sin^2 y = \frac{\sin^2 y_0 + \cos^2 y_0 \operatorname{sh}^2 x_1 + \sin^2 y_0 \operatorname{sh}^2 x}{\sin^2 y_0 + \operatorname{sh}^2 x}, \quad |x| \ge x_1.$$

21

Видно, что при $y_0=0$ форма электродов соответствует «идеальному» ондулятору, а при $y_0=\pi/2$ вырождается в полуплоскость $y=\pi/2$, $|x| \gg > x_1$.

Рис. 1. Геометрия ЭСО с электродами типа полуплоскостей

Знание потенциала позволяет определить компоненты вектора напряженности электрического поля E_x , E_y в любой точке. В частности, в плоскости симметрии, где транспортируется электронный пучок,

$$E_y = 0, \ E_x = Ak \frac{\sin y}{(c^2 + \cos^2 y)^{1/2}}.$$

Вычисляя амплитуду первой пространственной гармоники поля E_1 , для формфактора ЭСО $H = E_1/k\varphi_0$ получим

$$H = \frac{1}{k\varphi_0 \pi} \int_0^{2\pi} E_x \sin y \, dy = \frac{4}{\pi y_0 r} \left[K(r) - E(r) \right], \ r = \frac{1}{\left(1 + c^2\right)^{1/2}},$$

где K, E — полные эллиптические интегралы первого и второго рода модуля r. Максимальное значение формфактора достигается при $y_0=0$ и равно формфактору «идеального» ондулятора: $H=H_i$.

Электропрочность ЭСО зависит от максимальной напряженности поля на его электродах E_m , поэтому как показатель качества ЭСО G можно выбрать отношение амплитуды первой пространственной гармоники к этой величине: $G=E_1/E_m$. Приведем значения напряженностей иоля вдали от плоскости симметрии ($x \gg 1$) и на «острие» электрода:

$$E(\infty) = k\varphi_0/y_0, E(x_1) = E(\infty) \operatorname{cth}(x_1) \operatorname{tg}(y_0).$$

При не слишком малых зазорах $(x_1>1)$ они равны при $tg(y_0) = -th(x_1) \approx 1$, т. е. когда ширина электрода составляет примерно четверть периода ондулятора: $L/d = L/2a \approx 1/4$. Зависимости формфактора H и показателя качества ЭСО G от ширины электрода при различных зазорах приведены на рис. 2.

ЭСО с овальными электродами

В этом случае используем потенциал, порождаемый периодической системой точечных источников, у которой на полупериоде имеются два положительных и два отрицательных заряда одинаковой величины. На рис. 3, а положительные заряды расположены в точках $(x_{01}, 1/2)$ и

Рис. 3. Геометрия ЭСО с овальными электродами и возможные их формы (a): $x_{01}=1,2$ (1); 1,7 (2); 2,2 (3) и зависимость ширины электрода L от положения заряда x_{01} (б): $x_1=1$, $x_2=5$

 $(x_{02}, 1/2)$, а отрицательные — симметрично относительно оси *у*. Используя формулу (1), для скалярного потенциала получим

$$\varphi = A \ln \frac{(\operatorname{ch} x \cos y)^2 + (\operatorname{sh} x \sin y + c_1)^2}{(\operatorname{ch} x \cos y)^2 + (\operatorname{sh} x \sin y - c_1)^2} \frac{(\operatorname{ch} x \cos y)^2 + (\operatorname{sh} x \sin y + c_2)^2}{(\operatorname{ch} x \cos y)^2 + (\operatorname{sh} x \sin y - c_2)^2}, \qquad (4)$$

где $c_1 = \operatorname{sh}(x_{01})$, $c_2 = \operatorname{sh}(x_{02})$. В этом случае семейство эквипотенциалей является трехпараметрическим; в качестве параметров будем использовать: x_1 — полуширину рабочего зазора, x_2 — полувысоту ондулятора, x_{01} — координату одного из зарядов. Тогда для константы A имеем

$$A = \frac{\varphi_0}{\ln (Z^2)}, \quad Z = \frac{(\operatorname{sh} x_1 + \operatorname{sh} x_2) + (c_1 + c_2)}{(\operatorname{sh} x_1 + \operatorname{sh} x_2) - (c_1 + c_2)}.$$
(5)

Уравнение эквипотенциалей при фиксированном значении у является уравнением 4-го порядка относительно sh x:

$$\begin{aligned} a_4 \sin^4 x + a_3 \sin^3 x + a_2 \sin^2 x + a_1 \sin x + a_0 &= 0, \\ a_4 &= (Z^2 - 1), \ a_3 &= -2 (Z^2 + 1) (c_1 + c_2) \sin y, \\ a_2 &= (Z^2 - 1) [(c_1^2 + c_2^2) + 4c_1c_2 \sin^2 y + 2\cos^2 y], \\ a_1 &= -2 (Z^2 + 1) [(c_1 + c_2) \cos^2 y + (c_1^2 c_2 + c_2^2 c_1)] \sin y, \\ a_0 &= (Z^2 - 1) [\cos^4 y + \cos^2 y (c_1^2 + c_2^2) + c_1^2 c_2^2]. \end{aligned}$$

При $y=\pi/2$ — в плоскости симметрии электрода — оно распадается на два квадратных уравнения и просто решается, откуда следует связь параметров:

$$c_1c_2 = \operatorname{sh}(x_{01}) \operatorname{sh}(x_{02}) = \operatorname{sh}(x_1) \operatorname{sh}(x_2),$$

т. е. параметр x_{02} можно исключить как функцию трех остальных. Характерные формы электродов представлены на рис. 3, а. При фиксированных значениях размеров x_1 , x_2 параметр x_{01} ($x_1 < x_{01} < x_2$) определяет ширину электрода L (рис. 3, б). Ее максимум соответствует случаю, когда два заряда находятся в одной и той же точке: $x_{01} = x_{02} = x_0 =$ =arsh[sh (x_1) sh (x_2)].

Вычисление формфактора ЭСО дает

$$H = \frac{8}{\ln (Z^2)} (e^{-x_{01}} + e^{-x_{02}}).$$

Определение показателя качества ЭСО *G* проводилось численно, путем максимизации напряженности электрического поля по поверхности электрода. Результаты расчета при $x_1=1$, $x_2=5$ представлены на рис. 4. Видно, что и в этом случае оптимальным является ЭСО, у ко-

Рис. 4. Зависимости формфактора H и показателя качества G ЭСО с овальными электродами от их ширины L: x₁=1, x₂=5. Горизонтальная штриховая линия соответствует значению формфактора «идеального» ЭСС

торого ширина электродов близка к четверти периода. При этом формфактор по сравнению с «идеальным» ондулятором уменьшается незначительно.

Из выражения для потенциала (4) нетрудно установить, что линейная плотность заряда q связана с константой A соотношением $q = 4\pi\epsilon_0 A$, где ϵ_0 — диэлектрическая проницаемость вакуума. Учитывая, что заряд электрода в два раза больше, а разность потенциалов между ними равна $2\varphi_0$, получим погонную емкость ЭСО на один период:

$$C_d = 4\pi\varepsilon_0 \, \frac{1}{\ln\left(Z\right)},$$

где Z определено выражением (5).

Приведенная методика позволяет рассчитать и оптимизировать все необходимые характеристики ЭСО рассмотренных типов. Вариант с овальными электродами может служить основой для практической разработки конструкций ЭСО. Результаты применимы также для качественного анализа полей в коаксиальных ЭСО большого диаметра, которые могут использоваться для накачки трубчатых электронных потоков.

ЛИТЕРАТУРА

[1] Гиротрон//Под ред. А. В. Гапонова-Грехова. Горький, 1981. [2] Братман В. Л., Денисов Г. Г., Коровин С. Д. и др.//Релятивистская высокочастотная электроника. Горький, 1990. Вып. 6. С. 206. [3] Маршалл Т. Лазеры на свободных электронах М., 1987. [4] Смайт В. Электростатика и электродинамика. М., 1954. [5] Морс Ф. М., Фешбах Г. Методы теоретической физики. М., 1958. [6] Лаврентьев М. А., Шабат Б. В. Методы теории функций комплексного переменного. М., 1987.

Поступила в редакцию 30.03.92