ФИЗИКА ТВЕРДОГО ТЕЛА

УДК 620.193.92

ИЗУЧЕНИЕ ПРОДУКТОВ ПОЧВЕННОЙ КОРРОЗИИ ЖЕЛЕЗНОГО ОБРАЗЦА МЕТОДОМ МЕССБАУЭРОВСКОЙ СПЕКТРОСКОПИИ

А. А. Новакова, Т. С. Гендлер, Н. Д. Манюрова, Р. А. Турищева (кафедра физики твердого тела)

Исследован химический и структурный состав верхнего коррозионного слоя археологического железного гвоздя, пролежавшего в почве Смоленской области с XII в. С помощью комплексной методики было получено, что он включает в себя следующие вещества: мелкодисперсный α Fe₂O₃, γ Fe₂O₃, частично окисленный FeS₂, FeCl₂·2H₂O, Fe₃(PO₄)₂·8H₂O, FeSO₃·3H₂O, FeSO₄·4H₂O.

В работе изучался коррозионный слой археологического железного гвоздя, пролежавшего в почве Смоленской области 8 столетий. Задача эта является весьма актуальной для правильного выбора химических реагентов, необходимых для обработки археологических металлических предметов в целях их консервации и нейтрализации дальнейшего разрушительного действия агрессивных ионов коррозионного слоя. Считается, что наиболее активными являются анионы Cl⁻, встраивающиеся в структуру соединений ржавчины. Поэтому очень важно выяснение химического и структурного состава коррозионного слоя.

На предметы, находящиеся в почве, воздействуют влага, кислород и химические и биологические соединения, характерные для данного типа почв. Помимо этого периодически меняются влажность, температура окружающей среды. Поэтому в зависимости от места захоронения железного предмета структурные компоненты коррозионного слоя (ржавчины) будут различными.

Исследование осложняется еще и тем, что помимо кристаллических веществ различной дисперсности в коррознонном слое могут присутствовать и аморфные формы

I, отн. ед.

соединений железа. В наиболее рыхлом верхнем коррозионном слое образца, который находится в не-посредственном контакте с почвой, обычно присутствуют аморфные и дисперсные вещества, различные почвенные минералы. Слой, примыкающий к железному ядру, содержит окристаллизовавшиеся, устойчивые соединения железа, такие как Fe_3O_4 и Fe_2O_3 [1]. Слои перекрываются, проникают друг в друга, образуя промежуточные, что в свою очередь усложняет задачу. В связи с этим для изучения состава и дисперсности частиц коррозионного слоя был применен комплекс следующих методов: химический анализ, рентгеновская дифрактометрия, мёссбауэровская спектроскопия и термомагнитный анализ (TMA).

Толщу ржавчины с исследуемого нами образца по цвету удалось разделить на три слоя: сероголубой, оранжево-коричневый и серый (в направлении с поверхности в глубину). Мёссбауэровские спектры всех трех слоев (рис. 1) содержат в центральной части набор дублетов, соответствующих

Рис. І. Мёссбауэровские спектры коррозионного слоя образца археологического железного гвоздя (XII в): спектр верхнего (синего) слоя (а), более глубокого (оранжево-коричневого) слоя (б) и слоя, примыкающего к железному ядру (в)

парамагнитным соединениям двух- и трехвалентного железа. Различие в спектрах этих слоев состоит в меняющемся с глубиной вкладе секстетов, отвечающих ферро-

магнитным соединениям железа: в спектре поверхностного слоя секстета практически нет, в спектре среднего слоя наблюдаются достаточно четкие секстеты, принадлежащие магнетиту, в спектре самого глубокого слоя кроме линий магнетита появляется секстет металлического железа.

Таким образом, на спектрах ярко проявляется динамика процесса коррозии, при котором металлическое железо окисляется до магнетита. Последний в свою очередь разрушается в приповерхностном слое и образует тонкодисперсные парамагнитные соединения не только Fe³⁺, но и Fe²⁺. Это может иметь место только в случае параллельного восстановительного процесса в почвах.

Почвы Смоленской области относятся к дерново-подзолистым. Систематические исследования этих почв [2] позволили определить их как сульфатсодержащие. При длительном захоронении металлических предметов в такого типа почвах основным компонентом ржавчины является FeSO₄.nH₂O [3].

Рис. 2. Термомагнитные кривые верхнего коррозионного слоя образца: первый (сплошная линия) и второй нагрев (штриховая)

Химический анализ всей толщи ржавчины с изучаемого образца показал наличие в ней помимо железа следующих элементов: S ~5%, P ~3,6%, Cl ~0,1%, Si ~0,1%, Mn ~0,1%, Al ~0,1%. В данной работе подробно был изучен верхний коррознонный слой. Рентгеноструктурный анализ позволил выделить окристализованные вещества: α Fe₂O₃, Fe₃O₄ или γ Fe₂O₃, Fe₃(PO₄)₂.8H₂O, FeS₂, FeSO₃.3H₂O. С учетом этих данных и известных параметров спектров ряда двухвалентных солей железа была проведена математическая обработка мёссбауэровского спектра при комнатной температуре. Она показала, что в центральный узкий дублет могут давать вклад FeS₂ и γ FeOOH [4] и тонкодисперсные частицы α Fe₂O₃. Уширенный дублет с большими параметрами изомерного сдвига δ и квадрунольного расщепления Δ отвечает двухвалентным соединениям железа:

FeSO₃ · 3H₂O, FeSO₄ · 4H₂O, Fe₃ (PO₄)₂ · 8H₂O, FeCl₂ · 2H₂O µ Fe (COO)₂ · 2H₂O [5, 6].

Ферромагнитные соединения верхнего слоя, І. отн. ед. незначительно проявляющиеся на мёссбауэровском спектре, отчетливо диагностируются методом ТМА (рис. 2). Основная температура Кюри на кривой ТМА равна 620 °С и при T=700 °С (предельная температура измерений) полного размагничивания не наступает. Наблюдается также особенность в виде «ступеньки» в интервале температур 480—520 °С. Кривая намагниченности $J_s(T)$ второго нагрева необратима: особенность T~500 °C исчезает, намагниченность падает особенность при в 3,5 раза. Все это дает основания диагностировать в составе исследуемого слоя неустойчивый к нагреву окисленный магнетит и гематит. Площадка на кривой Is(T) при 480-520 °C отвечает фазовому переходу частично окисленного пирита в магнетит и гематит. Известно, что при T>300 °C

Рис. 3. Спектры верхнего коррозионного слоя образца до (a) и после термомагнитного анализа (прогрев до 700 °C) (б): $I - FeS_2$ и уFeOOH, $2 - \alpha Fe_2O_3$ (диаметр частип ~50Å), $3 - FeCl_2 \cdot 2H_2O$, $4 - Fe_3(PO)_4)_2 \cdot 8H_2O$, $5 - FeSO_3 \cdot 3H_2O$, $6 - FeSO_4 \cdot 4H_2O$, $7 - Fe(COO)_2 \cdot 2H_2O$, $8 - \alpha Fe_2O_3$, $9 - Fe_3O_4$

также окисляются до aFe₂O₃ соединения FeCl₂ · nH₂O, FePO₄ · nH₂O [7, 8].

Фазовые превращения, произошедшие во время нагревания образца до 700°С, ярко демонстрируются на спектре отожженного в процессе ТМА образца (рис. 3). Исчезли пики, соответствующие Fe^{2+} соединениям. До нагрева магнитные окислы железа в спектре исходного образца занимают лишь около 4% общей площади (рис. 3, *a*), а 46% составляют спектры ионных соединений двухвалентного железа, пирит и тонкодисперсные частицы αFe₂O₃. После TMA (рис. 3, 6) площадь спектра магнитной фракции образца возросла до 50% в результате распада двухвалентных соединений железа, пирита и окисления части магнетита.

Результаты по комплексному исследованию верхнего коррозионного слоя сведены в таблицу.

ИЗМ	енения в	фазовом	составе	верхнего	корг	юзионного	слоя	В	процессе	нагрева	
			ļ	до 700°С	при	тма				-	

Мёссбауэровские спектры до ТМА	Химические превращения в процессе ТМА	Мёссбауэровские спектры после ТМА
	$Fe_3O_4 \rightarrow \gamma Fe_2O_3$	γFe ₂ O ₃
$\mathrm{Fe_2O_3}$ ($arnothing\leqslant50$ Å)	—	$Fe_2O_3 (\emptyset \leq 50 \text{ \AA})$
γFeOOH	$\gamma FeOOH \rightarrow Fe_2O_3$	γFe_2O_3
FeS_2	$FeS_2 \rightarrow Fe_2O_3$	50% FeS2, Fe2O3
FeSO ₃ · 3H ₂ O	$FeSO_3 \cdot 3H_2O \rightarrow Fe_2O_3$	αFe_2O_3
$FeSO_4 \cdot 4H_2O$	$FeSO_4 \cdot 4H_2O \rightarrow Fe_2O_3$	aFe ₂ O ₃
$Fe(COO)_2 \cdot 2H_2O$	Fe (COO) ₂ · $2H_2O \rightarrow Fe_2O_3$	αFe_2O_3
$Fe_3(PO_4)_2 - 8H_2O$	$Fe_3 (PO_4)_2 \cdot 8H_2O \rightarrow Fe_2O_3$	αFe ₂ O ₃
$FeC1_2 \cdot 2H_2O$	$FeCl_2 2H_2O \rightarrow Fe_2O_3$	αFe ₂ O ₃

Таким образом, нам удалось определить фазовый состав верхнего наиболее дисперсного коррозионного слоя, образовавшегося в результате как окислительных, так и восстановительных процессов, происходящих в почве, о чем свидетельствуют обнаруженные не только трех-, но и двухвалентные соединения железа.

ЛИТЕРАТУРА

[1] Спаght Р.//Conservation of Iron: Marytime Monograf and Reports. L., 1982, N 53. P. 11. [2] Зонн С. В. Железо в почвах. М., 1982. [3] Закков Г. Е., Маслов С. А., Рубайло В. Л. Кислотные дожди и окружающая среда. М., 1991. [4] Bearden A. J., Mattern P. L., Hart T. R.//Rev. Mod. Phys. 1964. 36. P. 470. [5] Jonson C. E.//Proc. Phys. Soc. 1966. 88. P. 72. [6] Marco J. F., Davalos J., Gocncedo J. R., Gracia M.//Hyperfine. Interaction. 1990. 55. P. 55. [7] Vertes A., Zsoldos B.//Acta Chim. Acad. Scientiarum Hungar. 1970. 65, N. 3. P. 261. [8] Piper//Geochim. Cosmochim. Acta. 1988. 52, N 8. P. 20.

Поступила в редакцию 02.11.92

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1993. Т. 34, № 3

УДК 669.866.018:448.7

ФАЗОВАЯ ДИАГРАММА КВАЗИБИНАРНОЙ СИСТЕМЫ Ег_{1-х}Ть_хМл₂, синтезированной при высоком давлении

А. С. Илюшин, И. А. Никанорова, М. Аль-Дервиш^{*}), А. В. Цвященко, Л. Н. Фомичева, Ши Лей^{**}) (кафедра физики твердого тела)

Методом рентгеновского анализа поликристаллов изучены фазовый состав и атомно-кристаллическая структура сплавов квазибинарной системы $Er_{1-x}Tb_xMn_2$, синтезированных при высоких давлениях. Построена фазовая диаграмма этой системы в координатах «состав—давление».

В современных технологиях получения новых материалов с выдающимися физическими свойствами успешно используют процессы синтеза веществ, протекающие

*) Сирия.

**) Китай.