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THEORY OF GRAVITATIONAL FIELD 

A. A. Logunov 

Within the framework of special relativity theory, based on the geometrization 
principle, fundamental equations are derived for gravitational field, which neces­
sarily involve the graviton mass. According to these equations, a homogeneous 
and isotropic Universe develops cyclically and can only be "planar." The exis­
tence of a large "'latent" mass of substance in this Universe is predicted. Tl1e 
theory excludes the existence of "black holes." 

INTRODUCTION 

Einstein's general relativity theory (GRT) 1 whose fundamental equations were constructed by Einstein 
and Hilbert in 1915, opened up a new stage in the study of gravitation phenomena. However, almost from 
the very beginning, along with achievements, this theory has also encountered conceptual difficulties in the 
determination of physical characteristics of the gravitational field and, as a consequence, in the statement of 
energy-momentum conservation laws. 

As will be seen below, it is possible to combine Poincare's idea of gravitational field [1] (as a physical 
field of the Faraday-Maxwell type) and Einstein's ideaof~emann geometry of space-time. This can be done 
within the framework of special relativity theory, which describes phenomena in both inertial and noninertial 
reference frames, if one uses the geometrization principle reflecting the universality of the field-substance 
gravitational.interaction and introduces a graviton mass. This approach led to relativistic gravitation theory 
(RGT) [2] possessing all conservation laws as do all the other physical theories. 

1. GENERAL PRINCIPLES OF RGT 

On passing to the construction of the theory of gravitational field we shall proceed from the following 
basic principles. 

1. RGT is based on special relativity theory, and therefore the Minkowski space (the pseudo-Euclidean 
geometry of space-time) is the fundamental space for all physical fields, including the gravitational field. This 
principle is necessary and sufficient for both the energy-momentum and angular momentum conservation 
laws to hold for substance and gravitational field taken together. In other words, the Minkowski space 
reflects the dynamic properties common to all forms of matter, and, consequently, there exist unified physical 
characteristics that make it possible to describe quantitatively the transformation of forms of matter into one 
another. The 11inkowski space cannot be regarded as a priori existing because it reflects properties of matter 
and hence is inseparable from it. This space has ·a profound physical significance because it determines the 
universal properties of matter, such as energy1 momentum, and angular momentum. 

Gravitational field is described by a symmetric tensor 41"" of the second rank and is a real physical 
field having energy-momentum density, rest mass m, and polarization states corresponding to spins 2 and 0 
by virtue of the equations 

( 1) 

\vhere Dµ is the covariant derivative in the Minkowski space. 
Besides the exclusion of nonphysical field states, Eq. (1) introduces the metric tensor /µv of the 

1Iinko\vski space in the theory, which permits separation of inertia forces from forces due to the action 
of gravitational field. The choice of the diagonal metric '"fµv makes it possible to completely exclude the 
action of inertia forces. The metric of the 1\finkowski space allows one to introduce the notion of length and 
tin1e standards in the absence of gravitational field. As \Vill be seen later, the interaction bet,veen the tensor 
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gravitational field and the substance can be introduced in such a way as to sort of deform the U1inko\vski 
space, changing the metr .c properties without violating the causality principle. 

2. Because the gravitational field is described by the symmetric second-rank tensor <f>IJ" and its inter­
action \Vith other fields can be considered universal, there arises a unique possibility to "connect" this field 
directly to the tensor 1µ 11 in the substance Lagrangian density according to the rule 

(2) 

\\'here 

(3) 

<I> A are the substance fields, g = det Uµv, / = det /µvi and 9"'"911 (1 = 6~. The raising and lowering of indices 
for the tensor ~µ11 is achieved with the aid of 'Y µ 11 , and for the tensor gµv this is done using the metric tensor 
of the Riemann space. By substance we mean all forms of matter with the exception of the gravitational 
field. 

This kind of interaction between the gravitational field and the substance leads to the concept of 
an effective Riemann spcice, where motion of substance takes place, and to the geometrization principle. 
According to this princirle, the substance motion under the action of the gravitational field q.µv in the 
Minko\vski space with th1~ metric tensor /µ, 11 is identical to its motion in the effective Riemann space \Vith 
the metric g µ 11 • In this approach, the effective Riemann space is of field origin due to the p!esence of the 
gravitational field 4>1J.". B ~cause the metric properties are determined by the tensor of the effective Riemann 
space in the presence of gravitational field and by the tensor /µv of the Minkowski space in its absence 1 the 
RGT can give an answer to the question of how the dimensions of the body and the clock rate vary under 
the action of the gravitational field. A theory where the tensor Jµv is not involved in the field equations 
cannot, in principle, answer such questions. 

In GRT the gravita1fonal field is characterized by the metric tensor g""' whereas in our theory it is 
determined by the tensor quantity c)J.1" 1 and the effective Riemann space is constructed using the .field ii>"'" 
and also the metric tensoi· 1 1"

1 of the Minkowski space that fixes a definite choice of the coordinate system. 
In our theory there ex:ist Galilean (inertial) coordinate systems, and therefore acceleration is of absolute 

character. A test body 1noves in the effective Riemann space along a geodesic line of the space, but the 
motion is not free because it is caused by gravitational field. If the test body were charged, it would irradiate 
electromagnetic waves be(ause, in the general case, its motion in the field would have a variable acceleration. 
Since the effective Riemann space is created by the gravitational field 4>/J. 11 located in the ~1inkowski space, 
it can always be set {and this is very important) in a single coordiiiate system. This means that we shall 
deal only with Riemann spaces that are defined on a single chart. From this point of view, Riemann spaces 
with complex topology ar' completely excluded because they are not of field origin. 

It should be noted tli at since the substance motion occurs in the effective Riemann space, the equations 
of this motion do not involve the metric tensor r •• of the Minkowski space. The Minkowski space affects the 
substance motion only vie.. the metric tensor g,. 11 of the Riemann space, which is determined from equations 
that contain the metric tensor }µ11· 

2. GAUGE TRANSFORMATION GROUP 

Since the substance :~agrangian density has the form 

(4) 

it is easy to find a group of gauge transformations under which the variation of the substance Lagrangian 
density can only be a 4-di vergence expression. To this end we use the invariance of action: 

SM= J LM(!i"", <l>A) d4
:i: 

under an arbitrary infinit{simal variation of the coordinates 

:i:'" = x" +~"(x), 

2 

(5) 

( 6) 
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\vhere ~a is an infinitesimal displacement 4-vector. 
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Under these coordinate transformations the field functions gµv and <PA change in the follo\\•ing \\'ay: 

where the expressions 

are Lie variations. 

!i'""(x') = §""(x) + 6i!i""(x) + ~0 (x)D0g""(x), 
<l>'.,(x') = <l>A(x) + 61<l>A(x) + ~0 (x)D0<!>A(x), 

6i9""(x) = g•• D.~"(x) + g" 0 D0~•(x) - D0 (~0g"") 

61<l>A(x) = -{0 (x)Da<l>A(x) + F%;';<1>B(x)D0 {P(x) 

The operators Oe satisfy the conditions of Lie algebra, i.e., the commutation relation 

and the Jacobi identity 

where 

For relation (9) to hold it is necessary that the following conditions be fulfilled: 

where the structural constants f are given by the formula 

f µa;r _ <#<a <r <a<# <T 
v/j;r1 - u13 u,,u 11 - u 11 u,,u13 • 

It can easily be shown that they satisfy the Jacobi identity: 

and possess the property of antisymmetry: 

f av;p _ Jva;p 
fjµ;l7 - - µIJ;". 

Under the coordinate transformation (6) the variation of action is equal to zero: 

6cSu = j L~1 (x')d'-x' - jLu(x)d'-x = 0, 

n' n 

The first integral in (14) can be written as 

j L~1 (x') d4 x' = j J L~1 (x') d'-x, 
n• n 

\vhere 
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(i) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 
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(
8x'0

) 
J = det oxP , 

In the first order with r1~spect to ~o: the determinant J has the form 

In view of the expansion 

and expression (15), the variation can be represented in the form 

6cSM = f [6LM(x) + 80 (~0 LM(x))Ja'x = 0, 

n 

Since the volume of the region of integration n is arbitrary, we have the identity 

where the Lie variation 5LJtf is expressed as 

Vol. 48, /1/o. 4. 

(15) 

(16) 

(17) 

In particular, it foLows that if the scalar density depends on ii"" and the derivatives 80 ii"" solely, then 
after transformation (8) its variation can only be a 4·divergence expression: 

6L(ii""(:i:)) = -8a(f"(:i:)L(ii""(:i:))), (16a) 

\vhere the Lie variation 5£ is given by formula 

6L(-""(:i:)) = 8L 0-"" + 8L 6(8 -""), 
' g og"" g 8(8aii"") ag (17a) 

Lie variations (8) were found as a consequence of coordinate transformations (6), However, this can 
also be considered from another viewpoint when (8) can be regarded as gauge transformations, In this case 
the arbitrary infinitesimal 4-vector ~a(x) is a gauge vector and not a coordinate displacement vector, In 
what follows, to stress the distinction between the gauge group and the coordinate transformation group we 
shall denote the group parameter as <a(x), and the transformation of field functions 

with increments 

ii""(x) - ii""(x) + 6ii""(:i:), 
<I>A(x) - <I>A(x) + 6<I>A(x) 

6,g""(x) = ii"a Da<"(:i:) + ii"aDa<"(x) - D,,(<aii""), 

6,<I>A(x) = -<0 (x)Da<I>A(:i:) + F!t'pa<l>s(x)Da<P(x) 

will be called gauge transformations, 

(18) 

( 19) 

Fully in accordancE' with formulas (9) and (10), the operators satisfy the conditions of the same Lie 
algebra, i.e., the commutation relation 

(20) 

4 
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and the Jacobi identity 

[6,,, [6,,, 6,,J] + [o,,, [6,,, 6,,l] + [6,,, [6,,, o,,l] = o. 

Here, by analogy with (10), we have 
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(21) 

The gauge group has arisen from the geometrized structure of the scalar Lagrangian density 
L.A1(§µ 11

, cI> A) of the substance, and, by virtue of identity (16) 1 its variation under gauge transformations 
(19) can only be a divergence expression. 

Thus, the geometrization principle which determined the universal character of interaction bet\veen sub­
stance and gravitational field enabled us to form the non-commutative infinite-dimensional gauge group (19). 

The essential distinction between the gauge and coordinate transformations will manifest itself at the 
key point of the theory in the construction of scalar density for the Lagrangian of the gravitational field 
proper. The distinction is due to the fact that under a gauge transformation the metric tensor 1 µ 11 does not 
change, and consequently, by virtue of (3), we have 

Based on (19), the transformation for the field is derived: 

6,(i;""(x) = gµa Dac"(x) + g"a Da<"(x) - Da(<a§""), 

but it substantially differs from the field transformation under coordinate displacement: 

6<(i;""(x) = (i;µa Da~"(x) + (i;va Da{"(z) - Da(~a(i;""). 

Under gauge transformations (19) the equations of substance motion do not change because for any such 
transformation the variation of the substance Lagrangian density is a divergence expression. 

3. THE LAGRANGIAN DENSITY AND EQUATIONS OF MOTION 
FOR THE GRAVITATIONAL FIELD PROPER 

As is known1 using the tensor 9µv alone it is impossible to construct the scalar Lagrangian density of the 
gravitational field proper relative to arbitrary coordinate transformations as a quadratic form in derivatives 
of the order no higher than first. Therefore, along with the metric 9µ 11 , this Lagrangian density rpust also 
necessarily include the metric /µv· However, under gauge transformation (19) the metric /µ 11 does not 
change. Consequently, for the variation of the Lagrangian density of the gravitational field proper under this 
transformation to be a divergence expression some strong constraints must be imposed on its structure. It 
is this point where a fundamental distinction between the gauge and the coordinate transformations arises. 
\V'hereas the coordinate transformations impose practically no constraints on the structure of the scalar 
Lagrangian density of the gravitational field proper 1 the gauge transformations make it possible to find the 
Lagrangian density. A direct general method of constructing the Lagrangian is described in [2]. 

Here we select a simpler method for constructing the Lagrangian. Based on (16a), we conclude that 
the simplest scalar densities ~ and R. = v=g R, where R is the scalar ·curvature of the effective Riemann 
space, change under gauge transformation (19) in the following way: 

H-> Fu- D,(<" H), 

R _, R - D.(<" R). 

The scalar density R is expressed in terms of the Christoffel symbols 

5 

(22) 

(23) 

(24) 
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a.s 
R- - -µv (r" r• r" r• ) fj (-µvr• -µ•rv ) - -g µv ),q - µq v>. - v g µq - g µq · 

Since the Christoffel syn1bols are not tensor quantities, each term in (25) is not a scalar density. 
the introduction of the tensor quantity G~ 11 

G~v = ~g""(Dµ9uv + Dv9uµ - Du9µv) 

makes it possible to write the scalar density in the form 

R- - -µv (G" G" G" G" ) D (-""G" -""G" ) - -g µv ),q - µq v), - II g µq - g µq • 

(25) 

Hovoever, 

(26) 

(27) 

We note that in (27) ea,:h individual term behaves under arbitrary coordinate transformations as a scalar 
density. In view of (22) and (23) we conclude that the variation of the expression 

(28) 

under arbitrary gauge transformations can only be a divergence expression. Taking the vector density Q" in 
the form 

Q" = 911"G:q -UJJ."G:.,., 
we eliminate in (28) the terms with higher-than-first-order derivatives and obtain the following Lagrangian 
density: 

(29) 

It is thus seen that the requirement that the variation of the Lagrangian density of the gravitational 
field proper under gauge transformation (19) be a divergence expression uniquely determines the structure 
of Lagrangian density (:~9). However, if we confine ourselves only to this density, then the equations of 
the gravitational field wi 11 be gauge invariant, and the metric 'l' "" of the Minkowski space will no longer be 
contained.in the system cf equations determined by Lagrangian density (29). Because this approach involves 
no metric 1µ.v of the Minl:owski space 1 it becomes impossible to represent the gravitational field (as a physical 
field of the Faraday-Mao~vell type) in the Minkowski space. For Lagrangian density (29) the introduction 
of the metric ')'µv by m02.ns of Eqs. (1) provides no way out because the physical quantities - the interval 
and the curvature tensor of the Riemann space and also the tensor t~" of the gravitational field will depend 
on the choice of the gauge, which is physically inadmissible. 

To preserve the COD cept of field in the Minkowski space and to exclude the ambiguity it is necessary 
to supplement the Lagra»gian density of gravitational field with a term violating the gauge group. At first 
glance it may seem that there is considerable arbitrariness in the choice of the Lagrangian density of the 
gravitational filed because the group can be violated in many diverse ways. However 1 this is not so because, 
as a result of the physical requirement imposed by Eqs. (1) on the polarization properties of the gravitational 
filed as a field with spins 2 and 0, the term that violates group (19) must be chosen so that Eqs. (1) become 
consequences of the system of equations for the gravitational and substance fields, since only in this case "'e 
\vill not have an overdetermined system of differential equations. 

To this end we intrc1duce the term 
(30) 

in the scalar Lagrangian density of the gravitational field; its variation under conditions ( 1) and transforma­
tions ( 19) is also a divergence expression but only on the class of vectors satisfying the condition 

(31) 

An almost similar situation takes place in electrodynamics with a nonzero photon rest mass. By virtue 
of (28)-(30), we can writ'' the expression 

(32) 

for the general scalar La~;rangian density. The last constant term in (32) has been introduced to make the 
Lagrangian density vanish in the absence of the gravitational field. The narrowing of the class of gauge 

6 
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vectors due to the introduction of term (30) auton1atically makes Eqs. ( 1) consequences of gravitational field 
equations. This 'vill be shown directly in 'vhat follows. 

According to the principle of least action, the equations for the gravitational field proper have the form 

(33) 

where Rµ,v is the Ricci tensor, which we write in the form 

(34) 

Because in the absence of tbe gravitational field Eqs. (33) must be satisfied identically, we have 

(35) 

\\.'e now find the density of the energy-momentum tensor of the gravitational field in the Minkowski 
space: 

(36) 

where 

(37) 

If the dynamic equations (33) are taken into account in expression (36), then we obtain the equations 
for the gravitational field proper· in the form 

(38) 

For Eq. (38) to be satisfied identically in the absence of gravitational field it is necessary to set 

(39) 

Since for the gravitational field proper the relation 

(40) 

always holds, Eq. (38) implies that 

(41) 

Thus, Eqs. (1) determining the polarization states of the field directly follow from Eqs. (38). In view 
ofEqs. (41), field equations (38) can be written as 

(42) 

In the Galilean coordinates this equation has a simple form: 

(43) 

It appears natural to interpret the factor ->.4 / >. 1 as the square of the graviton mass, m2 , and, according to 
the principle of correspondence, -l/A1 must be equated to 1611'. Hence, all the unkno\vn constants entering 
the Lagrangian density are determined: 

1 
>., = -­l6;r) 

m2 ;., = ,\4 = -2>.3 = -. 
- 161' 

7 
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The constructed scalar Lagrangian density of the gravitational field proper has the form 

L - l -""(G" G" G" G" ) m' (1 -µ• r-:: ~) g- l67rg µv )..,.- µd' v>. -~ 2,lµ11Y -y-g-y-f · 

The corresponding dynamic equations for the gravitational field proper can be written as 

or 

Fol. 48, /l.'o. 4 

(45) 

( 46) 

(47) 

These equations substantially restrict the class of gauge transformations and retain only the trivial ones 
that satisfy the Killing conditions. Such transformations are consequences of the Lorentz invariance and are 
present in any theory. 

The above Lagrangian density leads to Eqs. (47), which imply Eqs. (41), and therefore outside the 
substance we have ten equations for ten unknown field functions. Using Eqs. {41), the unknown field 
functions <.P0°'can be re.c,dily expressed in terms of the field functions c_pik, where the indices i and k run 
over the values 1, 2, anc. 3. Thus, in the Lagrangian density of the gravitational field proper the structure 
of the mass term violating the gauge group is uniquely determined by the polarization properties of the 
gravitational field. 

4. EQUATIONS OF MOTION FOR GRAVITATIONAL FIELD AND SUBSTANCE 

The total. Lagrangi •n density of substance and gravitational field is expressed as 

(48) 

where L, is defined by ( 15). 
Based on (48), applying the principle of lea.st action, we derive a complete system of equations for 

substance and gravitational field: 

(49) 

(50) 

Since \\'ith an arbitrary infinitesimal change of the coordinates the variation 6SM of action is zero, we have 

whence an identity is ob ;ained in the form [2] 

(51) 

Here T>.-,,. = -26LM/6g>.. 11 is the substance tensor in the Riemann space and \7>. is the covariant derivative 
in this space with the mi~tric 9>..v· 

Identity (51) implies that if equations of substance motion (50) are satisfied, then we have 

'1>.T"" = 0. (52) 

When the number ofEqs. (50) for substance is equal to four, they can be replaced by the equivalent Eqs. (52). 
As in what follows we shall deal only with these equations for substance, we shall always use equations for 
substance in the form (52). 
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Thus, the complete system of equations for substance and gravitational field "·ill have the form 

6L 
69'"'' = 0, 

\l;T"v = 0. 

(53) 

(54) 

The substance will be described by velocity v, substance density p, and pressure p. The gravitational 
field is determined by the ten components of the tensor ~µv. We thus have 15 unknowns. For their 
determination it is necessary to supplement the 14 equations (53), (54) with an equation of state of the 
substance. If the relations 

are taken into consideration, the system of equations (53), (54) can be represented in the form 

(R"" _ ~g""R) + ~
2 [g"" + (g"agvP _ ~g••gaP)-rap] = J;T"", 

\I ,,T"" = 0. 

By virtue of the Bianchi identity, we have 

and Eqs. (57) imply 

In vie\\' of the expression 
~µiaP == -G:a /qfJ - G~piqa, 

where G~a is given by formula (26), we find 

(g"agvP _ ~g""gaP)vµrap = 'l'µ>..U""(D,g'" + G~pga"), 

and, because 

formula (61) takes the form 

Using (63) we can represent (59) as 

2 ""D _,,, 16 ~ T"" mfµ'>..Y qg = 7rvµ • 

This expression can be rewritten in the form 

With the aid of (64), Eq. (58) can be replaced by the equation 

9 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 
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Therefore the system of equations (57) 1 (58) reduces to the system of gravitational equations in the form 

Introducing the tensor 

we can write the system of equations (66), (67) as 

lt can also be representei in the form 

or 

(66) 

(67) 

(66a) 

(57a) 

(68) 

(59) 

(68a) 

(69a) 

It should be stresse:I particularly that both system (68) and system (69) include the metric tensor of 
the Minkowski space. 

The coordinate transformations under which the metric of the Minkowski space is form-invariant are 
related by physically equivalent reference frames. The simplest among them are inertial reference frames. 
Therefore the possible gauge transformations satisfying the Killing conditions, 

do not take us outside the class of physically equivalent reference frames. lf we admit that it is possible to 
measure experimentally the characteristics of the Riemann space and substance motion with an arbitrarily 
high accuracy, then, based on Eqs. (68a) and (69a), we can determine the metric of the Minkowski space 
and find the Galilean (in,>rtial) coordinate systems. Hence, in principle, the Minkowski space is observable. 

The existence of th~~ Minkowski space is reflected in conservation laws, and therefore their verification 
in physical phenomena is at the same time the verification of the space-time structure. 

The system of gravi~ational equations can also be written in another equivalent fo:im: 

iafJ DQDp~µv + m2~µ11 = 16;rtµv, 

Dµ~µv = 0, 

(70) 

(71) 

where t1J 11 = -26L/6gµv :.s the density of the energy-momentum tensor of substance and gravitational field 
in the 1vlinkowski space. 'rhis form of equations resembles equations of electrodynamics v • .rith photon mass µ 
in the absence of gravitation: 

la/3 D<zD/3~411 + µ2 Av = 4;rjv, 

DvA" = 0. 

(72) 

(73) 

'\'hereas in electrod~rnamics the source of the vector field Av is the conserved electromagnetic current jv 
generated by charged bocies, in RGT the source of the tensor field is the conserved total energy-momentum 
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tensor of substance and gravitational field. Therefore the gravitational equations are nonlinear even for ihe 
gravitational field proper. 

We particularly note that, along with the well-known cosmological term, Eqs. (66) also include an 
additional term containing the metric / µv of the Minkowski space. The two terms enter the equations with a 
common constant that coincides with the graviton mass and therefore is very small. The second mass t_erm 
in Eqs. (66) containing the metric 'Yµv gives rise to repulsion forces that are very large in strong gravitational 
fields. This factor changes the character of the collapse and development of the Universe. As was seen 
earlier, the existence of the graviton rest mass is of fundamental importance to the construction of field 
theory of gravitational field. It is owing to the presence of the graviton mass that the theory implies that a 
homogeneous and isotropic Universe can only be planar. 

5. THE CAUSALITY PRJNCIPLE IN RGT 

As the theories of other physical fields, RGT is constructed within the framework of special relativity 
theory. According to the latter, any motion of a point test body always occurs inside the causality light 
cone of the 1\-iinkowski space. Consequently, noninertial reference frames realized by test bodies must also 
he inside the causality cone of the pseudo-Euclidean space-time. This determines the whole class of possible 
noninertial reference frames. 'Vhen a particle is acted upon, a local equivalence of inertia and gravitation 
will take place if the light cone of the effective Riemann space does not extend outside the limits of the 
causality light cone of the Minkowski space. Only in this case can the gravitational field acting on the test 
body he locally excluded by passing to an admissible non-inertial reference frame related to the body. 

If the light cone of the effective Riemann space extended outside the limits of the causality light 
cone of the l\Iinkowski space1 this would mean that such a "gravitational field" cannot have a non-inertial 
reference frame in which this '"field" can be excluded when acting on the particle. In other words 1 the 
local "equivalence" of inertia and gravitation can only be possible when the gravitational field, acting on 
particles as a physical field, does not drive their world lines outside the limits of the causality light cone of 
the pseudcrEuclidean space-time. 

This condition should be regarded either as a causality principle or as an equivalence principle making it 
possible to select solutions to the system of equations (66), (67) that have a physical meaning and correspond 
to gravitational fields. The causality principle does not hold automatically. This is due to the fact that the 
gravitational interaction enters the coefficients in the second-order derivatives in the field equations, i. e., it 
changes the original geometry of space-time. This feature is characteristic only of the gravitational field. 
The interaction of all the other known physical fields usually does not affect the second-order derivatives in 
the field equations and therefore does not change the original pseudo-Euclidean geometry of space-time. 

We now present an analytical statement of the causality principle in RGT. In RGT, the substance 
motion induced by the gravitational field in the pseudo-Euclidean space-time is equivalent to substance 
motion in the corresponding effective Riemann space-time. Therefore, for causally related events (world 
lines of part ides and light), on the one hand, the condition 

(74) 

must hold 1 and, on the other hand, the inequality 

(75) 

must necessarily be satisfied. For the chosen reference frame realized by physical bodies 1 the condition 

'Yoo > 0 (76) 

holds. 
In expression (75) we separate the time- and space-like parts: 

2 ( i'Oi dxi) 
2 

i k d" = fiOO dt + fiOO - S,. dx dx . (77) 

11 
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Here the Roman indices i and k run over the values 1, 2, and 3, 

1'oi1'0k 
So: = -1i.1: + --, 

-Yoo 
(78) 

and Stk is the metric tensor of the three-dimensional space in the four-dimensional pseudo-Euclidean space­
time. 

The square of the :;patial distance is given by the expression 

d 12 = S,. dz' dz•. (79) 

We represent the velocily vi = dx1 /dt in the form vi = vei, where vis the magnitude of the velocity and ei 
is an arbitrary unit vector in the three-dimensional space: 

(80) 

In the absence of gravitational :field, the velocity of light in the chosen coordinate system is readily found 
from expression (77) by equating it to zero: 

. 2 

( 
-Yo; dz') ; • .,;=roe dt + .,;=roe = S,. dz dz . 

Whence we found 

v=..;=roo/(1- ~)-
Thus, an arbitrary four-dimensional isotropic vector u11 in the Minkowski space is expressed as 

u" = (1, ve'). 

(81) 

(82) 

For conditions (74) and (75) to hold simultaneously it is necessary and sufficient that for any isotropic 
vector 

(83) 

the causality condition 

(84} 

should hold, and it means that the light cone of the effective Riemann space does not extend outside the 
limits of the causality light cone of the pseudo-Euclidean space-time. 

The causality cond .. tions can be written in the following form: 

gµ 11 v"v 11 = 0, 

/'µvV 11 v 11 ~ 0. 

(83a) 

(84a) 

In GRT only those solutions to the Einstein-Hilbert equations have a physical meaning which satisfy 
at each point of space-ti;ne the inequality 

g < 0, 

and also a requirement tb.at is called the energy-dominance condition and is stated in the following way: for 
any time-like vector [(11 ~he inequality 

T"" KµKv ;i. 0 

must hold, and for the given vector [( 11 the expression T" 11 !(11 must form a non-space-like vector. 
Jn the proposed tho,ory only those solutions to Eqs. (68a} and (69a} have a physical meaning which, 

along with the above conditions, also satisfy the causality conditions (83a) and (84a). By virtue of Eq. (68a), 
condition (84a) can be written in the following form: 

R '""}'" - g.,,. ("' 1 r)1'" ,.. m' ''" , .• 
µ11J'\. \. ::=:: ~ ~µ11 - 2g"" \. J'\. + -;z-uµ11J'\. J'\ . (85) 

To conclude this section we should like to note that although we derived the gravitational equations 
(66} and (67) with the gl'aviton mass several years ago, the logic of our construction gradually led us to the 
conclusion that the graviton rest mass does exist because it alone makes it possible to construct the theory 
of tensor field in the Mir.kowski space that leads to the effective Riemann geometry of space-time. 
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The system of RGT equations (66), (67) leads to completely different and qualitatively new physical 
conclusions as compared to GRT. For example, the concept of collapse is totally changed. It turns out that 
during the collapse of a spherically symmetric body of arbitrary mass, the contraction process stops in a 
region close to the Schwarzschild sphere and is then replaced by a subsequent expansion. This means that in 
nature, there must exist expanding objects along with the contracting ones. Hence, according to RGT, the 
existence of "black holes" (objects having no material boundaries and "cut off" from the external world) is 
completely excluded. 

Another important physical implication refers to the development of a homogeneous and isotrbpic 
Universe. Equations (66) and (67) and also the causality conditions (83) and (84) imply that a homogeneous 
and isotropic Universe exists infinitely long, and its three-dimensional geometry is Euclidean. The Universe 
develops cyclically from a maximum finite density to a minimum one, then again to a maximum density (in 
the case there is no dissipation), etc. The theory predicts the existence of a large "latent" mass of substance 
in the Universe because, according to Eqs. (66) and (67), at the present time the total density of substance 
lS 

(86) 

·Hence it follows that even for a fairly small graviton mass the density of substance is close to the critical 
value p, determined by the Hubble constant H: 

3H2 

p, = 811:G· (87) 

RGT explains all the known gravitational experiments in the solar system and, as was seen earlier, 
makes it possible to introduce the notion of energy-momentum tensor for the gravitational field as in the 
case of other physical fields. According to Eqs. (66}, the energy-momentum tensor -26L1 /6gµv of the 
gravitational field in the Riemann space vanishes outside the substance. However, this does not mean that 
there is no gravitational radiation because a gravitational wave transporting energy propagates against an 
effective gravitation background. 

As to the gravitational radiation of massive gravitons, this question was considered in [3], where it was 
shown that the earlier calculations were based on an incorrectly derived general expression for the intensity. 
Namely, its derivation did not take into account the important fact that in reality the gravitons propagate 
not in the Minkowski space but in the effective Riemann space. The inclusion of this fact led the author 
of [3] to the assertion that the intensity of gravitational radiation of massive gravitons is a positive definite 
quantity. 

The system ofRGT gravitational equations (66), (67) opens up new possibilities for both fundamental 
research and specific studies of various gravitation phenomena. 

In conclusion we should like to make some important remarks. Is it possible to equate the graviton 
mass to zero? Since in our theory the graviton mass removes degeneration with respect to the gauge group, it 
is not quite correct to equate it to zero directly in Eqs. (66) and (67). In our theory it must not vanish. The 
system of gravitational equations (66), (67) is hyperbolic, and the causality principle ensures that throughout 
the space there exists a space-like surface which is intersected by every non-space-like curve in the Riemann 
space only once, in other words, there exists a global Cauchy surface on which initial physical conditions are 
set for various problems. 

Penrose .and Hawking [4] proved existence theorems for singularity in GRT under some definite general 
conditions. Because, according to Eqs. (68a) and by virtue of causality conditions (85), outside the substance 
the isotropic vectors of the Riemann space satisfy the inequality 

(88) 

the conditions of the existence theorems for singularity do not hold in RGT, and their assertions are inap­
plicable in RGT. In the proposed theory, the events that are space-like in the absence of gravitational field 
can never become time-like under the action of the gravitational field. By virtue of the causality principle, 
the effective Riemann space in RGT possesses isotropic and time-like geodesic completeness. 
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Based on "'hat w~ presented above, the following general conclusion can be dra\\'n. If, in view of the 
universality of gravitation, it is assumed that the source of the gravitational field in the Minkowski space 
is the conserved energy- momentum tensor of substance and massive gravitational field 1 then the field itself 
will manifest itself as a f.econd-rank tensor field. By analogy with electrodynamics, it is reasonable to write 
the field equations in the following form: 

However, this system of equations follows from the Lagrangian formalism only in the case when the interaction 
between substance and .~ravitational field obeys the geometrization principle, which ·reduces the action of 
this field to the effective space-time geometry. 

Thus, the assumption of conserved energy-momentum tensor of matter as a universal source of the 
gravitational field necessarily leads to the effective Riemann geometry. Since the field theory of gravitation 
requires the introductior. of a graviton mass and its structure is close to that of electrodynamics, it is quite 
probable that the photon rest mass is also nonzero. 
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