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THEORY OF GRAVITATIONAL FIELD

A. A Logunov

Within the framework of special relativity theory, based on the gecmetrization
principle, fundamental equations are derived for gravitational field, which neces-
sarily involve the graviton mass. According to these equations, a homogeneous
and isotropic Universe develops cyclically and can only be “planar.” The exis-
tence of a large “latent” mass of substance in this Universe is predicted. The
theory excludes the existence of “black holes.”

INTRODUCTION

Einstein’s general relativity theory (GRT), whose fundamental equations were constructed by Einstein
and Hilbert in 1915, opened up a new stage in the study of gravitation phenomena. However, almost from
the very beginning, along with achievements, this theory has also encountered conceptual difficulties in the
determination of physical characteristics of the gravitational fleld and, as a consequence, in the statement of
energy-momentum conservation laws.

As will be seen below, it is possible to combine Poincaré’s idea of gravitational field {1] (as a physical
field of the Faraday—Maxwell type) and Einstein’s idea of Riemann geometry of space-time. This can be done
within the framework of special relativity theory, which describes phenomena in both inertial and noninertial
reference frames, if one uses the geometrization principle reflecting the universality of the field-substance
gravitational interaction and introduces a graviton mass. This approach led to relativistic gravitation theory
{RGT) [2] possessing all conservation laws as do all the other physical theories.

1. GENERAL PRINCIPLES OF RGT

On passing to the construction of t.he theory of gravitational fleld we shall procead from the following
bastc principles.

1. RGT is based on special relativity theory, and therefore the Minkowski space (the pseudo-Euclidean
geometry of space-time) is the fundamental space for all physical fields, including the gravitational field. This
principle is necessary and sufficient for both the energy-momentum and angular momentum conservation
laws to hold for substance and gravitational field taken together. In other words, the Minkowski space
reflects the dynamic properties common to all forms of matter, and, consequently, there exist unified physical
characteristics that make it possible to describe quantitatively the transformation of forms of matter into one
another. The Minkowski space cannot be regarded as a priori existing because it reflects properties of matter
and hence is inseparable from it. This space has a profound physical significance because it determmes the
universal properties of matter, such as energy, momentum, and angular momentum.

Gravitational field is described by a symmetric tensor 4% of the second rank and is a real physical
field having energy-momentum density, rest mass m, and polarization states corresponding to spins 2 and 0
by virtue of the equations

D, 3% =0, (1)

where D, is the covariant derivative in the Minkowski space. .

Besides the exclusion of nonphysical field states, Eq. (1) introduces the metric tensor +y,, of the
Minkowski space in the theory, which permits separation of inertia forces from forces due to the action
of gravitational field. The choice of the diagonal metric v,, makes it possible to completely exclude the
action of inertia forces. The metric of the Minkowski space allows one to introduce the notion of length and
time standards in the absence of gravitational field. As will be seen later, the interaction between the tensor
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gravitational field and the substance can be introduced in such a way as to sort of deform the Minkowski
space, changing the metr ¢ properties without viclating the causality principle.

2. Because the gravitational field is described by the symmetric second-rank tensor $#¥ and its inter-
action with other fields can be considered universal, there arises a unigue possibility to “connect” this field
directly to the tensor v#¥ in the substance Lagrangian density according to the rule

Las(5#, @4) = Lag(g"”, @4), {2)
where
e LY S N TR LR C i ST O (3)

® 4 are the substance fields, g = det g,.,, ¥ = detw,,, and §#¥§,., = 6%. The raising and lowering of indices
for the tensor $#¥ is achieved with the aid of v,,, and for the tensor g#¥ this is done using the metric tensor
of the Riemann space. By substance we mean all forms of matter with the exception of the gravitational
field.

This kind of interaction between the gravitational field and the substance leads to the concept of
an effective Riemann space, where motion of substance takes place, and to the geometrization principle.
According to this principle, the substance motion under the action of the gravitational field ®4¥ in the
Minlkowski space with the metric tensor ¥y,, is identical to its moticn in the effective Riemann space with
the metric g,,. In this approach, the effective Riemann space is of field origin due to the presence of the
gravitational field $#¥. B:cause the metric properties are determined by the tensor of the effective Riemann
space in the presence of gravitational field and by the tensor 7, of the Minkowski space in its absence, the
RGT can give an answer to the question of how the dimensions of the body and the clock rate vary under
the action of the gravitational field. A theory where the tensor ,, is not involved in the field equations
cannot, in principle, answer such questions.

In GRT the gravitational field is characterized by the metric tensor g,,, whereas in our theory it is
determined by the tensor quantity ¥, and the effective Riemann space is constructed using the field +¥
and also the metric tensor v#¥ of the Minkowski space that fixes a definite choice of the coordinate system.

In our theory there exist Galilean (inertial) coordinate systems, and therefore acceleration is of absolute
character. A test body roves in the effective Riemann space along a geodesic line of the space, but the
motion is not free because it is caused by gravitational field. If the test body were charged, it would irradiate
electromagnetic waves because, in the general case, its motion in the field would have a variable acceleration.
Since the effective Riemann space is created by the gravitational field ¥ located in the Minkowski space,
it can always be set (and this is very important) in a single coordinate system. This means that we shall
deal only with Riemann spaces that are defined on a single chart. From this point of view, Riemann spaces
with complex topology ar: completely excluded because they are not of field origin.

It should be noted that since the substance motion occurs in the effective Riemann space, the equations
of this motion do not involve the metric tensor v, of the Minkowski space. The Minkowski space affects the
substance motion only vie the metric tensor g,, of the Riemann space, which is determined from equations
that contain the metric tensor v,..

2. GAUGE TRANSFORMATION GROUP
Since the substance Lagrangian density has the form
. LM(g‘w!(bA)s (4)

it is easy to find a group of gauge transformations under which the variation of the substance Lagrangian
density can only be a 4-divergence expression. To this end we use the invariance of action:

Sy = /LM(_E'W, D4)diz (5)
under an arbitrary infinitesimal variation of the coordinates
% = z% +£%(z), (6)
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where £% is an infinitesimal dispiacement 4-vector.
Under these coordinate transformations the field functions §#* and ®4 change in the following way:

gH (") = §* (z) + 63" (2) + £°(2) Dad* (),

7
@ (2) = Palz) + 6:2a(2) + £¥(z)DaPal(z), @
where the expressions
8" (z) = §** Dok () + §*° Dak*(z) — Dal(§*5*") )
§¢®a(2) = =€ (2) DB a(z) + Friy Bp(z) Db (2)
are Lie variations,
" - The operators & satisfy the conditions of Lie algebra, i.e., the commutation relation
['553 ' 652](') = 6&:(‘)! {9)
and the Jacobi identity
{‘St'u LN 653)] + [6531 [0, 6621] + [662# ¢ ‘551]} =0,
where
£ = &0 D.E] - 65 D8 = £13,67 — £58,8). (10)
For relation (9) to hold it is necessary that the following conditions be fulfilled:
B u -C; Bio nCip _ i
FA;:‘FB;;_FA;;FB;:‘—'f:;;;FA;:’ ‘ (11)
where the structural constants f are given by the formula
vhia = 0p856] — 876565, (12)
It can easily be shown that they satisfy the Jacobi identity:
FE FTE LS ST 4 FREe fi < 0 (13)
and possess the property of antisymmetry:
puir = ~fupia-
Under the coordinate transformation (6) the variation of action is equal to zero:
b8y = /L}u(_:c’) d*z’ — fLA;(z)fz =0. (14)
el o _

The first integral in (14) can be written as

-/.L},f(:c') diz’ =fJij(z') dz,

o o

where
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' - J = det (%’:—:),

In the first order with respect to €% the determinant J has the form
J =1+ 3.8% (). (15)

In view of the expunsion

Ol
fze’

and expression (15), the variation can be represented in the form

Ly (z') = Liy(z) + £°(z)

dcSy = /[5LM(¢D) + 5a(f"LM(x))]d4:c =0. _
a

Since the volume of the region of integration Q2 is arbitrary, we have the identity

6Lp(z) = ~0al€%(x)Lar(z)), : (16)
where the Lie variation 5Lz is expressed as

Ly iy . OLn o
§Ly(z) = 3§nv6g +a(aa§w)'5(a“g )+

L . 8L
5%, 8P4 + mé(&,ﬁi,ﬂ. (17

In particular, it fol.ows that if the scalar density depends on §* and the derivatives 3,§*" solely, then
after transformation (8) its variation can only be a 4-divergence expression:

SL(5*"(2)) = =8a(€7(2)L(F* (2))), (16a)
where the Lie variation 5L is given by formula

. oL .. 6L . i
SLG" (7)) = 589 + W‘S(%g” ). (17a)

Lie variations (8) were found as a consequence of coordinate transformations {6). However, this can
also be considered from another viewpoint when (8} can be regarded as gauge transformations. In this case
the arbitrary infinitesimal 4-vector £%(z) is a gauge vector and not a coordinate displacement vector. In
what follows, to stress the distinction between the gauge group and the coordinate transformation group we
shall denote the group parameter as £%(z}, and the transformation of field functions

g (z) — §% () + 63" (2),

Ba(z) = Ba(z) + 60 4(2) (18)

with increments

55" (2) = § Dat”(2) + §" Das*(z) — Dle25*),

5,0 a(x) = —2(2) Da®a(x) + FE205(z) Dac’ (2) (19)

will be called gauge transformations.
Fully in accordance with formulas (9) and (10), the operators satisfy the conditions of the same Lie
algebra, 1. e., the commutation refation

[Be1s Be,)(4) = 8c,(4), (20)

4
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and the Jacobi identivy

[6e,. [Bes Be]) + {8y, (6, bea) + [80a, [6ss, 8,)) = 0. (21)
Here, by analogy with (10}, we have

e3 =eiDyely — ebDyel = e 8ueh — ehBuel.

The gauge group has arisen from the geometrized structure of the scalar Lagrangian density
Ly (", ®4) of the substance, and, by virtue of identity {16), its variation under gauge transformations
(19) can only be a divergence expression.

Thus, the geometrization principle which determined the universal character of interaction between sub-
stance and gravitational field enabled us to form the non-commutative infinite-dimensional gauge group (19).

The essential distinetion between the gauge and coordinate transformations will manifest itself at the
key point of the theory in the construction of scalar density for the Lagrangian of the gravitational field
proper. The distinction is due to the fact that under a gauge transformation the metric tensor v,, does not
change, and consequently, by virtue of (3}, we have

6 () = 6.3+ (z).
Based on (19), the transformation for the field is derived:
8.4 (z) = §#* Doc”(2) + 7@ Dac?(2) — Doled*),
but it substantially differs from the field transformation under coordinate displacement:
§eB4 () = B4 Dob(2) + B**Dok¥(2) — Dal€2THY).

Under gauge transformations (19) the equations of substance motion do not change because for any such
transformation the variation of the substance Lagrangian density is a divergence expression.

3. THE LAGRANGIAN DENSITY AND EQUATIONS OF MOTION
FOR THE GRAVITATIONAL FIELD PROPER

As is known, using the tensor g, alone it is impossible to construct the scalar Lagrangian density of the
gravitational field proper relative to arbitrary coordinate transformations as a quadratic form in derivatives
of the order no higher than first. Therefore, along with the metric g,,, this Lagrangian density must also
necessarily include the metric v,.,. However, under gauge transformation (19) the metric v,, does not
change. Consequently, for the variation of the Lagrangian density of the gravitational field proper under this
transformation to be a divergence expression some strong constraints must be imposed on its structure. It
is this point where a fundamental distinction between the gauge and the coordinate transformations arises.
Whereas the coordinate transformations impose practically no constraints on the structure of the scalar
Lagrangian density of the gravitational field proper, the gauge transformations make it possible to find the
Lagrangian density. A direct general method of constructing the Lagrangian is described in [2].

Here we select a simpler method for constructing the Lagrangian. Based on (18a), we conclude that
the simplest scalar densities \/—g and R= =g R, where R is the scalar curvature of the effective Riemann
space, change under gauge transformation (19) in the following way:

V=g = /=g - D.(e"/=g), (22)
R~ R-D,(¢"R). (23)

The scalar density R is expressed in terms of the Christoffel symbols

1
ri‘w = EgAa(aﬂgov + avgop - avg,u.u) (24)
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as
R=—g*(r),T], - T3,1%,) - 8.(3*T7, - §“T,). (25)

Since the Christoffel symbols are not tensor quantities, each term in (25) is not a scalar density, However,
the introduction of the tznsor quantity Gﬁ v

“ 1 e
";;.\w = EQA (Dugav + Dvgap — Doguv) (26)
makes it possible to write the scalar density in the form -
R=-§"(G),G%, - G2,G%) - D.(7*°GL, = §°GL)- @7)

We note that in (27) each individual term behaves under arbitrary coordinate transformations as a scalar
density. In view of {22) ind {23) we conclude that the variation of the expression

/\l(ﬁ + Dvé”) +Adov/—g (28)

under arbitrary gauge transformations can only be a divergence expression. Taking the vector density Q¥ in
the form
Q" =§""Gp, — §*°Gl,,

we eliminate in (28) the terms with higher-than-first-order derivatives and obtain the following Lagrangian

density: )
*Algﬂv(Giv Ka - GiaGiu) + ’\2 v—g. (29)

It is thus seen that the requirement that the variation of the Lagrangian density of the gravitational
field proper under gauge transformation (19) be a divergence expression uniquely determines the structure
of Lagrangian density (29). However, if we confine ourselves only to this density, then the equations of
the gravitational field will be gauge invariant, and the metric 7, of the Minkowski space will no longer be
contained.in the system <f equations determined by Lagrangian density (29). Because this approach involves
no metric ¥, of the Minkowski space, it becomes impossible to represent, the gravitational field (as a physical
field of the Faraday-Masxwell type} in the Minkowski space. For Lagrangian density (29) the introduction
of the metric v, by meens of Eqs. (1) provides no way out because the physical quantities — the interval
and the curvature tensor of the Riemann space and also the tensor t4* of the gravitational field will depend
on the choice of the gauge, which is physically inadmissible.

To preserve the concept of field in the Minkowski space and to exclude the ambiguity it is necessary
to supplement the Lagraigian density of gravitational field with a term violating the gauge group. At first
glance it may seem that there is considerable arbitrariness in the choice of the Lagrangian density of the
gravitational filed because the group can be violated in many diverse ways. However, this is not so because,
as a result of the physical requirement imposed by Egs. (1) on the polarization properties of the gravitational
filed as a field with spins 2 and 0, the term that violates group (19) must be chosen so that Egs. (1} become
consequences of the system of equations for the gravitational and substance fields, since only in this case we
will not have an overdetermined system of differentiai equations.

To this end we intraduce the term

7##5'” (30)

in the scalar Lagrangian Jdensity of the gravitational field; its variation under conditions (1) and transforma-
tions {19) is also a divergence expression but only on the class of vectors satisfying the condition

¢** D, D, (z) = 0. (31)

An almost similar situation takes place in electrodynamics with a nonzero photon rest mass. By virtue
of (28)-(30), we can writ: the expression

Ly = =M (G105, = Gholl) + dav/TT + Aamud®™ + vy (32)

for the general scalar Lagrangian density. The last constant term in (32) has been introduced to make the
Lagrangian density vanish in the absence of the gravitational field. The narrowing of the class of gauge
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vectors due to the introduction of term (30) automatically makes Egs. {1) consequences of gravitational field
equations. This will be shown directly in what follows.
According to the principle of least action, the equations for the gravitational field proper have the form

&L,
oguv

= A R,uv + 1\295411 + A37’]:1; =0, (33)

2

where R,, is the Ricci tensor, which we write in the form
R, = DAG - DG+ G5, - Gi,\G {34)
Because in the absence of the gravitational field Eqs. (33) must be satisfied identically, we have
Az = =2A3. (35)

We now find the density of the energy-momentum tensor of the gravitational field in the Minkowski
space:

= 2 = 2/TR(pm g = ) E T = I = A, (36)
Yuv 2 5
where
JHY = DaD,a('ra“ﬁﬁ" + _rvagﬂ,u _ _Yaﬁg ,;(,uw-nﬂ) . 37)

If the dynamic equations (33) are taken into account in expression (36), then we obtain the equations
for the gravitational field proper-in the form

ALJHY = 203g" = AgFHY = Y. (38)
For Eq. (38) to be satisfied identically in the absence of gravitational field it is necessary to set
Ay = —2Ag. (39)
Since for the gravitational field proper the relation

Dty =0 ‘ (40)
always holds, Eq. (38) implies that
D, = 0. (41)

Thus, Eqgs. (1) determining the polarization states of the field directly follow from Eqgs. (38). In view
of Egs. (41), field equations (38) can be written as

i‘*@w = g, (42)

af T
v*P D, Dy&4 — =

In the Galilean coordinates this equation has a simple form:

- )\4 1
sy _ BY _ T b
0@ -3 ALY ik (4‘3)

It appears natural to interpret the factor —A4/A; as the square of the graviton mass, m?, and, according to
the principle of correspondence, —1/A; must be equated to 16x. Hence, all the unknown constants entering
the Lagrangian density are determined:

1 m?
Mm——— ds=Ag=-—2A3=
' 167’ A= A= -2s = 167 (44)
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The constructed scalar Lagrangian density of the gravitational field proper has the form

1

Ly=Ton

m? 1
(GG = GhoGoa) = 1= (1™ = V= - V7). (45)
The corresponding dynamic equations for the gravitational field proper can be written as

JH = miH = 16wtk (46)

or

wy m? ] _uct v -
R = T g — o) = 0. (17)

These equations substantially restrict the class of gauge transformations and retain only the trivial ones
that satisfy the Killing conditions. Such transformations are consequences of the Lorentz invariance and are
present 1n any theory.

The above Lagrangian density leads to Egs. (47), which imply Eqgs. (41), and therefore outside the
substance we have ten equations for ten unknown field functions. Using Egs. (41), the unknown field
functions % can be readily expressed in terms of the field functions ®*, where the indices i and & run
over the values 1, 2, anc. 3. Thus, in the Lagrangian density of the gravitational field proper the structure
of the mass term violating the gauge group is uniquely determined by the polarization properties of the
gravitational field.

4. EQUATIONS OF MOTION FOR GRAVITATIONAL FIELD AND SUBSTANCE
The total Lagrangian density of substance and gravitational field is expressed as
L=L,+Lu( %), (48)

where L, is defined by (45).
Based on (48), applying the principle of least action, we derive a compleie system of equations for
substance and gravitational field:

6L

6L .
5 =0 (50)

Since with an arbitrary infinitesimal change of the coordinates the variation 65, of action is zero, we have
65y = 5-[LM(§“",¢‘A) diz=0

whence an identity is obsained in the form [2]

Ly dLas

AT = =D, (SR P2 80 ) ) - S (51)
Here T** = =28Lar /69y, is the substance tensor in the Riemann space and ¥, is the covariant derivative
in this space with the metric ga,.
Identity (51) implies that if equations of substance motion (50) are satisfied, then we have
VaT* = 0. - (5

When the number of Egs. (50} for substance is equal to four, they can be replaced by the equivalent Eqs. {52).
As in what follows we shall deal only with these equations for substance, we shall ailways use equations for
substance in the form (52).
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Thus, the complete system of equations for substance and gravitational field will have the form

§L
7 =
VaT™ = 0. (54)

(53)

The substance will be described by velocity v, substance density p, and pressure p. The gravitational
field is determined by the ten components of the tensor ®#*. We thus have 15 unknowns. For their
determination it is necessary to supplement the 14 equations (53}, (54} with an equation of state of the
substance. If the relations

&L 1 m® : or
T = ~Tor e + g 9w = 7w 9
5LM 1 1 -
Sgav 2\/"" (T“” - 53""’1—‘)’ (56)

are taken into consideration, the system of equations (53), (54) can be represented in the form

1 m? 1 8
RAY w Zgb? RY 4 | gh¥ 4 [ ghe v pr aff YaBt = T 57
(Lo ) + o (507 =B = 25 o
VAT = 0. (58)
By virtue of the Bianchi identity, we have
1
py _ oy —
V(R 59 R) =0,
and Eqs. (57) imply :
1
m* /= 9’(9““&7"5 - 59""9“’3) VuYap = 167V, TH. (59)
In view of the expression
AuYap = _G;a'/aﬁ - Gﬁﬂ'}’oaa (60)
where G, is given by formula (26), we find
[+ 3 1 v _a,
(g“ g° - 599 ﬁ)vu'Taﬁ = Yua0*(Dsg” + G5 59%%), (61)
and, because
V=9(Dag™ + Gop9°*) = Do (62)
formula (61) takes the form
o v 1 v =
V= (9“ g% - 39" 9% )vu'faﬁ = 79" Do 5. (63)
Using (63) we can represent {58) as
m2y,59% D, 3% = 16707, T4,
This expression can be rewritten in the form
m?D, 3 = 167>V, T (64)
With the aid of (64), Eq. (58) can be replaced by the equation
Dog*? =1. (65)
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Therefore the system of equations (57}, (58) reduces to the system of gravitational equations in the form

1 m?> 1 A
[ i 11 4 iy uo v opy ap - I’y
(R 59 R) + 5 [9 + (g 9" - 39%9 )'m] \/—?T : (66)
D" = 0. (67)
Introducing the tensor

2
Nr,uu - R"u - mng'w - gyaguﬁ'ymﬁ]’ N = N“Vg#us

we can write the system of equations (66), (67) as

NH - %;;*“’N = -\/S-f_—gT“”, (66a)
Duge =0 (67a)
It can aiso be represented in the form
8 1
wY By B
N# = ﬁ(r 59" T), (68)
D" =0 (69)
or
8x 1
= S (T o), s
D, =0. : (65a)

It should be stressed particularly that both system (68) and system (69) include the metric tensor of
the Minkowski space.

The coordinate transformations under which the metric of the Minkowski space is form-invariant are
related by physically equivalent reference frames. The simplest among them are inertial reference frames.
Therefore the possible gauge transformations satisfying the Kiiling conditions, :

Due, + Duey = 0,

do not take us outside the class of physically equivalent reference frames. If we admit that it is possibie to
measure experimentally the characteristics of the Riemann space and substance motion with an arbitrarily
high accuracy, then, based on Eqgs. (68a) and (69a), we can determine the metric of the Minkowski space
and find the Galilean (inertial) coordinate systems. Hence, in principle, the Minkowski space is observable.
The existence of the Minkowski space is reflected in conservation laws, and therefore their verification
in physical phenomena is at the same time the verification of the space-time structure.
The system of gravitational equations can also be written in another equivalent form:

122 Dy Dp®H + m2®% = 1674 “ (70)
D& =0, (71)
where t#¥ = —28L/8g,, s the density of the energy-momentum tensor of substance and gravitational field

1 the Minkowski space. 'This form of equations resembles equations of electrodynamics with photon mass
in the absence of gravitation:

‘{uﬂDqu4 v +-}J2A” = 475, (""‘2)
D, A" =0. (73)

Whereas in electrodynamics the source of the vector field A is the conserved electromagnetic current ;¥
generated by charged bocies, in RGT the source of the tensor field is the conserved total energy-momentum

10
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tensor of substance and gravitational field. Therefore the gravitational equations are nonlinear even for the
gravitational field proper.

We particularly note that, along with the well-known cosmological term, Egs. (60) also include an
additional term containing the metric ¥, of the Minkowski space. The two terms enter the equations with a
common censtant that coincides with the graviton mass and therefore is very small. The second mass term
in Egs. (66) containing the metric v,, gives rise to repulsion forces that are very large in strong gravitational
fields. This factor changes the character of the collapse and development of the Universe. As was seen
earlier, the existence of the graviton rest mass is of fundamental importance to the construction of field
theory of gravitational field. It is owing to the presence of the graviton mass that the theory implies that a
homogeneous and isotropic Universe can only be planar.

5. THE CAUSALITY PRINCIPLE IN RGT

As the theories of other physical fields, RGT is constructed within the framework of special relativity
theory. According to the latter, any motion of a point test body always occurs inside the c¢ausality light
cone of the Minkowski space. Consequently, noninertial reference frames realized by test bodies must also
be inside the causality cone of the pseudo-Euclidean space-time. This determines the whole class of possible
noninertial reference frames. When a particle is acted upon, a local equivalence of inertia and gravitation
will take place if the light cone of the effective Riemann space does not extend outside the limits of the
causality light cone of the Minkowski space. Only in this case can the gravitational field acting on the test
bedy be locally excluded by passing to an admissible non-inertial reference frame related to the body.

If the light cone of the effective Riemann space extended outside the limits of the causality light
cone of the Minkowski space, this would mean that such a “gravitational field” cannot have a non-inertial
reference frame in which this “field” can be excluded when acting on the particle. In other words, the
local “equivalence” of inertia and gravitation can only be pessible when the gravitational field, acting on
particles as a physical field, does not drive their world lines outside the limits of the causality light cone of
the pseudo-Euclidean space-time.

This condition should be regarded either as a causality principle or as an eqmvalence principle making it
possible to select solutions to the system of equations (68); (67) that have a physical meaning and correspond
to gravitational fields. The causality principle does not hold automatically. This is due to the fact that the
gravitational interaction enters the coefficients in the second-order derivatives in the field equations, i.e., it
changes the original geometry of space-time. This feature is characteristic only of the gravitational field.
The interaction of all the other known physical fields usually does not affect the second-order derivatives in
the field equations and therefore does not change the original pseudo-Euclidean geomeiry of space-time.

We now present an analytical statement of the causality principle in RGT. In RGT, the substance
motion induced by the gravitational field in the pseudo-Euclidean space-time is equivalent to substance
motion in the corresponding effective Riemann space-time. Therefore, for causally related events (world
lines of particles and light), on the one hand, the condition

ds® = Gupdr¥ dz¥ 2 0 (74)
must hold, and, on the other haﬂd, the inequality
do? =¥, dz*dz* 2 0 (75)
must necessarily be satisfied. For the chosen reference frame realized by physical bodies, the condition
Yoo > 0 (76)

holds.
In expression (75) we separate the time- and space-like parts:

Yoi d;l!

(,/"«m df + ) ~ Sipdx’ dz*. (77)

11
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-

Here the Roman indices ¢ and k£ run over the values 1, 2, and 3,
Yoi Yok -
Sk = —vap + ——, (78;
‘Yoo

and S;; is the metric tensor of the three-dimensional space in the four-dimensional pseudo-Euclidean space-
time.
The square of the spatial distance is given by the expression

d? = 5 dz' dz*. (79)
We represent the velocily v' = dz' /df in the form v* = ve’, where v is the magnitude of the velocity and ¢’
is an arbitrary unit vector in the three-dimensional space:
_ - Saeicf =1 . (80)
In the absence of gravitétiona] field, the velocity of light in the chosen coordinate system is readily found
from expression (77) by equating it to zero:

iy 2

Yoi dz’ ik

(1/"{00 dt + —*—-—-) = Jip dzt dz”.
v Toa

Whence we found

=m/(“j}m) i

Thus, an arbitrary four-dimensional isotropic vector u” in the Minkowski space is expressed as
u’ = (1, ve'). (82)

For conditions (74) and (75) to hold simultaneously it is necessary and sufficient that for any isotropic
vector

YupttFu” =0 (83)
the causality condition
Jurufu’ €0 (84)

should hold, and it means that the light cone of the effective Riemann space does not extend outside the
limits of the causality light cone of the pseudo-Euclidean space-time.
The causality cond tions can be written in the following form:

guv*v” =0, (83a}
Yurt*v¥ 2 0. (84a)

In GRT only those solutions to the Einstein-Hilbert equations have a physical meaning which satisfy
at each point of space-tiine the inequality
g<0,

and also a requirement that is called the energy-dominance condition and is stated in the following way: for
any time-like vector K, the inequality
THE K, 20

must hold, and for the given vector K, the expression T#¥ K, must form a non-space-like vector.

In the proposed theory only those solutions to Egs. (68a) and (69a) have a physical meaning which,
along with the above conditions, also satisfy the causality conditions (83a} and (84a). By virtue of Eq. (68a),
condition (84a) can be written in the following form:

- 8x 1 S ' L
Ry K*K* € \/__g(Tm, - 59,“,1")11“1\” + o KUK, (85)

To conclude this section we should like to note that although we derived the gravitational equations
{66) and (67) with the graviton mass several years ago, the logic of our construction gradually led us to the
conclusion that the graviton rest mass does exist because it alone makes it possible to construct the theory
of tensor field in the Mirkowski space that leads to the effective Riemann geomeiry of space-time.
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6. SOME PHYSICAL IMPLICATIONS OF RGT

The system of RGT equations (66), (67) leads to completely different and qualitatively new physical
conclusions as compared to GRT. For example, the concept of collapse is totally changed. It turns out that
during the collapse of a spherically symmetric body of arbitrary mass, the contraction process stops in a
region close to the Schwarzschild sphere and is then replaced by a subsequent expansion. This means that in
nature, there must exist expanding objects along with the contracting ones. Hence, according to RGT, the
existence of “black holes” {objects having no material boundaries and “cut off” from the external world) is
completely excluded.

Another important physical implication refers to the development of a homogeneous and isotropic
Universe. Equations {66) and (67) and also the causality conditions (83) and (84) imply that a homogeneous
and isotropic Universe exists infinitely long, and its three-dimensional geometry is Euclidean. The Universe
develops cyclically from a maximum finite density to a minimum one, then again to a maximum density (in
the case there is no dissipation), etc. The theory predicts the existence of a large “latent” mass of substance
in the Universe because, according to Eqs. (66) and {67), at the present time the total density of substance
is
1 sme?y\2
p=ret g () - (86)
-Hence it follows that even for a fairly small graviton mass the density of substance is close to the critical
value p, determined by the Hubble constant H:

3H?

RGT explains all the known gravitational experiments in the solar system and, as was seen earlier,
makes it possible to introduce the notion of energy-momentum tensor for the gravitational field as in the
case of other physical fields. According to Eqgs. (66), the energy-momentum temsor —26L,/dg,, of the
gravitational field in the Riemann space vanishes outside the substance. However, this does not mean that
there is no gravitational radiation because a gravitational wave transporting energy propagates against an
effective gravitation background.

As to the gravitational radiation of massive gravitons, this question was considered in [3], where it was
shown that the earlier calculations were based on an incorrectly derived general expression for the intensity.
Namely, its derivation did not take into account the important fact that in reality the gravitons propagate
not in the Minkowski space but in the effective Riernann space. The inclusion of this fact led the author
of [3] to the assertion that the intensity of gravitational radiation of massive gravitons is a positive definite
quantity. ‘

The system of RGT gravitational equations {66), (67) opens up new possibilities for both fundamental
research and specific studies of various gravitation phenormena.

In conclusion we should like to make some important remarks. Is it possible to equate the graviton
mass 1o zero? Since in our theory the graviton mass removes degeneration with respect to the gauge group, it
is not qmte correct to equate it to zero directly in Eqs. (66) and {67). In our theory it must not vanish. The
system of gravitational equations (66), {67) is hyperbolic, and the causality principle ensures that throughout
the space there exists a space-like surface which is intersected by every non-space-like curve in the Riemann
space only once, in other words, there exists a global Cauchy surface on which initial physical conditions are
set, for various problems.

Penrose and Hawking [4) proved existence theorems for singularity in GRT under some definite general
conditions. Because, according to Egs. (68a) and by virtue of causality conditions (85), outside the substance
the isotropic vectors of the Riemann space satis{y the inequality

Ru.v*v” €0, (88)

the conditions of the existence theorems for singularity do not hold in RGT, and their assertions are inap-
plicable in RGT. In the proposed theory, the events that are space-like in the absence of gravitational field
can never become time-like under the action of the gravitational field. By virtue of the causality principle,
the effective Riemann space in RGT possesses isotropic and time-like geodesic completeness.
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Based on what was presented above, the following general conclusion can be drawn. If, in view of the
universality of gravitation, it is assumed that the source of the gravitational field in the Minkowski space
is the conserved energy- momentum tensor of substance and massive gravitational field, then the field itself
will manifest itself as a second-rank tensor field. By analogy with electrodynamics, it is reasonable to write
the field equations in the following form:

Od* + m?e* = M+, §,3* =0.

However, this system of equations follows from the Lagrangian formalism only in the case when the interaction
between substance and zravitational field obeys the geometrization principle, which reduces the action of
this field to the effective space-time geometry.

Thus, the assumption of conserved energy-momentum tensor of matter as a universal source of the
gravitational field necessarily leads to the eflective Riemann geometry. Since the field theory of gravitation
requires the introductior of a graviton mass and its structure is close to that of electrodynamics, it is quite
probable that the photon rest mass is also nonzero.
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