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STARTING CONDITIONS OF RELATIVISTIC CARCINOTRONS 

WITH CONSIDERATION FOR INTERACTION BETWEEN THE 

ELECTRON BEAM AND THE FORWARD WAVE 

A. F. Aleksandrov, S. Yu. Galuzo, and A. M. Kuznetsov 

The interaction of an electron beam with the field of the electrodynamic system 
of a relativistic carcinotron iS analyzed in a linear approximation. Consideration 
is given not only to the interaction of the electron flux with the field of the 
( -1 )th space harmonic of a backward wave, but also to the field of the 0th space 
harmonic of a forward wave. The presence of this wave is due to the carcinotron 
design, where the microwave energy is taken out towards the electron collector. 
The effect of interaction with the forward wave on the starting conditions of the 
oscillator is demonstrated by an example of a concrete mock-up of a relativistic 
backward-wave tube. 

Relativistic microwave oscillators of the backward-wave-tube type with a retarding system in the form 
of a cylindrical waveguide with shallow sine-shaped w~l corrugation (the waveguide radius varies following 
the relationship R( z) = Rw + h x sin( k0z ), where ko = 21T / d, with d being the corrugation period), so-called 
carcinotrons (1-5), are extensively used as sources of powerful high-frequency pulses. Apart from standard 
assumptions of the monoenergetic and magnetized nature of electrons in the sense that a transverse shift of 
particles is neglected, a theoretical model of such devices assumes the Cerenkov resonance condition only 
for the ( -1 )th space harmonic of the wave whose energy propagates in a direction opposite to the electron 
beam: 

w"' k,,t, = (ko + kzo-)v., (1) 
where w is the wave field frequency, k,o_ = -k,o < 0 is the wave number of the fundamental (0th) space 
harmonic of the backward wave; k., is the wave number of the (-l)th space harmonic of the backward 
wave; and Ve is the electron velocity along the longitudinal z axis of the system. Such backward wave is 
usually Eo1 or Eo2. In further text we.shall analyze devices with the wave Eo1 • Note that in relativistic 
carcinotrons, microwave power is typically taken out towards the electron collector. This is done with the 
aid of a section of a cylindrical waveguide placed at the oscillator input whose dimensions correspond to the 
cutoff frequency of the operating wave. The presence of a forward wave in an electrodynamic system may 
cause certain effects which are analyzed in this study. 

It was shown in [2, 4] that an analysis of interaction of an electron flow with the field of a corrugated 
\vaveguide in the single-wave approximation of an electrodynamic system is not quite correct in a number 
of practically important cases when the 0th space harmonic of a forward wave is also slowed down despite 
the fact that the corrugation amplitude parameter h/2Rw is rather small. Under such devices the Cerenkov 
resonance requirement is satisfied simultaneously both for the {-l)th space harmonic of the backward wave 
(interaction of the backward-wave-tube type) and for the 0th space harmonic of the forward wave (interaction 
of the traveling-wave-tube type), the electron flow sets up a field in the system at a frequency close to 
the upper boundary of the main (low-frequency) transmission band of the system for Eo1 wave (1T mode 
oscillations), and the electrodynamic system features markedly pronounced resonance properties. Analysis 
of such systems has a number of peculiarities and often relies on consideration of oscillations in coupled 
resonator networks [6]. 

If the corrugation parameter is smaller than the above value, the 0th space harmonic is not slowed 
down and the Cerenkov resonance is observed far from the boundaries of the transmission banq of the 
electrodynamic system. In this case1 interaction of electrons with the 0th space harmonic of the for\vard 
\\'ave is usually neglected, because the transit angle of electrons due to phase detuning 

80 = L ( :, - k,o) "'L(2k.i - ko):::;, 2,,., (2) 
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where L is the length ,,f the corrugated part of the electrodynamic system, is significantly higher than the 
angle optimum for the interaction (- 11"). 

Consider condition (2) in greater detail. As is known [3], when selecting parameters of a corrugated 
waveguide for E01 operation it is required to eliminate interaction with higher modes, in particular, with 
Eo2. This can be done by satisfying the condition 

µ02 > ko Ve 
1 

Rw c 
(3) 

where µo, is the sth root of the equation Jo(µo,) = 0, and Jo(:i:) is the Bessel function of the zero order. To 
ensure maximum electric strength of the system it is required, as far as possible, to increase the average radius 
Rw of the corrugated waveguide; therefore,_ this relationship imposes a constraint on its maximum value. The 
simplest estimates for tlle transit angle can be obtained for ultrarelativistic electrons (-y; = (1- ,a;)-1 > 1, 
!3. = v./c). For exampl" if the equality sign is put in (3), expression (2) becomes 

(4) 

With corrugated waveg•1ides of length L "" (10-15)d commonly used in carcinotrons, we have Bo "" ( 4-6)11'. 
The calculations presented below will be made for the mock-up of an oscillator based on the estimates 

arrived at in [3]. Acceierating voltage U. = 450 kV, beam current Joo = 0.5-2 kA, Rw "" 1.14 d, h ::,: 
0.11 Rw, coupling imp< dance of the electron flow with the field of the (-1 )th space harmonic of a backward 
wave R 1 ""-0.3 ohm (l•eam radius r 0 ""0.6 Rw ), generator corrugation length L = 12 d. 

To answer the question whether it is necessary to consider interaction with a forward wave in relativistic 
carcinotrons, we shall use a low6 current beam approximation (Jbo < lcv), where lcv is maximum vacuum 
current. Assuming in a linear approximation that variation of all quantities follows the law exp{ i["1t-("' /v,+ 
6k) x z]}, write the syst"m of equations for exciting a forward wave (interaction with the 0th harmonic only) 
and a backward wave (with the ( -1 )th harmonic) of the electrodynamic system and waves of the beam space 
charge: 

2(b1 + 6)n1 + ilfj = 0, 

2(bo + 6)no + iiij = 0, 

2(n0 + ni) - i(o2 - a-)j = 0, 

(5) 

(6) 

(7) 

where j = J,,; J00 is a relative amplitude of the variable component of the beam current; "'• = 2r,/3~e x 
E,,/(mcw;) is normalized complex amplitudes of the z components of respective wave fields at the beam 
location; Ii = 16,,.rt/3: R,J,o/(Zolo/3},) is parameters of the electron beam interaction with the field of the 
respective wave; Zo = 377 ohms, lo = 17 kA; s = 0 corresponds to the 0th space harmonic and s = 11 to 
the ( -1 )th space harmonic of the backward wave; 

R, = -(-h-) 2 
Zo(kl_ + (ko-k.i)ko) 2 I5(p1ro) 

2Rw ,,.k;1 (ko - k,,)..,/c I6(P1Rw) 

is the coupling impedan•:e of the electron flow with the backward wave; Ro = Zoµ~1 Ji(P1 r1) / [ 11"k: 1 Rt.,~ x 

lf(µoiJ] is the coupling impedance of the electron flow with the forward wave; J1(:i:) is the Bessel function 

of the first order; /31, = "'(k,,c) is relative phase velocities of waves; b, = 2-r;fJ;(/31, - {30 )//31, is relative 
detuning of wave phase velocities as compared to the velocity of electrons; u = T x 8/3,Joo/( ')',Jo) is the 
space charge parameter; and 8 = 2;;f3;c/w x 8k. The coefficient T for a narrow tubular beam has the form 

~(~)[ J T = Io(xRw) Io(xRw)Ko(xr1)-Io(xr1)I<0 (xRw), (8) 

where x = [("' /v, + ck)2 - "'' / c2 ]11 2 
::,: "'/( cf3.r,), J0 (:i:) and K0 (:i:) are the Bessel functions of the imaginary 

argument. 
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Solving system (5)-(7) results in the variance equation of the fourth order with respect to the wave 
number 6: 

18 If 2 

bo + 6 + b1 + 6 + 6 - IT = Q. (9) 

When there is no interaction with the forward wave (IQ = 0), Eq. (9) is decomposed into the "three-wave" 
equation of a relativistic backward-wave tube 

(62
-:- u)(b1 + 6) =-If (10) 

and the equation describing the variance law for the 0th space harmonic of the forward wave undisturbed 
by the electron flow: 

b0 + 6 = 0. (11) 

To obtain starting conditions for a carcinotron, it is required to set boundary conditions at the input 
(cutoff narrowing) and the output (matching horn) of the oscillator. Apart from the conventional requirement 
of no current or velocity modulation of the electron flow at the input [7]: 

(12) 

(13) 

and also the condition that there must be no backward wave field at z = L (ideal matching of the output): 

4 

L <>1m exp{-i6kmL} = 0, 
m:l 

(14) 

one has to consider the conditions of converting a backward wave into a forward one, which can be written 
thus: 

4 (18)~· .. 
];, <>om= JlfJ f <>1m exp{uP}. (15) 

This condition is tantamount to the ab~ence of microwave power at the system input. 
A phase shift depends on the geometry of a transitional section where the corrugated surface changes 

into the input cutoff narrowing. A possibility of varying the phase shift 1/1 can be experimentally obtained, 
for example, by placing, between the cutoff narrowing and the corrugation, a short section of a cylindrical 
waveguide with the radius equal to the average radius of the corrugated waveguide. Then, the phase shift 
1/J can be varied by varying the length of the cylindrical waveguide. The variation of the phase shift ~ 1/J 
depends on changes in the length of the cylindrical waveguide section ~L: ~1/J = -2k,0~L. Note that in 
our statement of the boundary problem, the. interaction of waves with the electron flow in this short section 
of a cylindrical waveguide is actually ignored. · 

Variance equation (9) was solved with consideration for boundary conditions (12)-(15) by numerical 
methods. Figure 1 presents results of estimation of the beam starting current Jb8 t depending on the radius on 
the assumption of no interaction between the electrons and the forward wave of the electrodynamic system 
(18 = 0) and a small space charge (u = O). In this case the starting conditions are independent of the phase 
shift 1/•. As can be seen from Fig. 1, the values of the starting current calculated by Eqs. (9), (12)-(15) fit 
well to those computed by Kompfner's method of successive approximations for a three-wave backward-wave 
tube according to [3]. 

The situation in a real-life ca:rcinotron differs considerably from the case when the interaction with a 
forward wave is ignored. For actual parameters of the electron flux interaction with a forward wave, Fig. 2 
illustrates the dependence of the current J0., and the relative detuning of the phase velocity (/3/1 - /3,)//3/1 
of the ( -1) th space harmonic of the backward wave in the starting mode of operation on the phase shift 
bet\veen the \\'aves at the corrugation input \Vith an unchanged beam radius. It can be seen from Fig. 2 
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Fig. 1 

Carcinotron st~.rting current lb:st versus normalized beam radius for the case of small space 
charge (u = 0) and no interaction with a forward wave (I8 = 0). Solid curve represents 
results of calculations according to data from [3]; dots stand for the results of numerical 
solution of vari mce equation (9) with boundary conditions (12) through (15). 
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Fig. 2 

The starting current J.,, (a) and the relative detuning of phase velocity (/3n - /],)/ fln (b) 
for the ( -1 )th :;pace harmonic of the backward wave versus the wave phase shift ,P at the 
oscillator input for actual values of the current parameter 18. 

that the starting current Jb,,t and the detuning depend to a considerable extent on the wave phasing at 
the system input, with the range of the oscillator starting current being la:st max/ la:st min ;::::: 4.3. Figure 3 
shows typical distributions of the normalized amplitudes of the field set up by the Oth and ( -1 )th space 
harmonics (curves 2 and 1, respectively) along the oscillator axis at maximum (a) and minimum (b) starting 
current. Relationships between the normalized amplit.ude· of the beam current variable component j and 
the longitudinal coordinate for these two cases are presented .in Fig. 4. As shown in Figs. 3 and 4, the wave 
phasing at the oscillato1 input is less favorable in the former case (Jb:st = Jb:st max) than in the latter. This 
results in a reduction of the oscillator space effectively used for electron bunching \Vhich, in its turn, increases 
the threshold current a1. which the generation starts. It should be pointed out that the range of currents 
required for single-frequmcy operation of a carcinotron is known [8, 9] to be, as a rule, (l-2.5)J.,,. When a 
carcinotron starts operating in this range one observes first periodic and then stochastic modulation of the 
output radiation power. If this current exceeds the starting current by a certain value, strong microwave 
fields may appear in the working space of the oscillator. As a result, a certain number of electrons may be 
completely stopped and turned back, which may affect significantly the beam transportation stability. 

The studies made :;how that interaction of the electron flow not only with the (-l)th space harmonic 
of the backward wave, but also with the 0th harmonic of the forward wave should be taken into account in 
relativistic carcinotrons \vith electrodynamic systems in the form of corrugated cylindrical waveguides with 
a small corrugation amplitude. This is particularly important for cases of weak relativity of the beam, when 
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Distribution of the z component of electrical field over the longitudinal coordinate for the 
backward (1) and forward (2) waves when (a) ,P"' 0.3211" (maximum starting current) and 
(b) ,P"' I.Bir (minimum starting current). 
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Fig. 4 

Distribution of the beam current variable component j over the longitudinal coordinate: 
,P"' 0.321' (1) and ,P"' 1.6" (2). 

the optimum length of the oscillator is rather small. Consideration for the above interaction results in great 
changes in the oscillator starting conditions. 
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