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THE AMPLITUDE-PHASE RELATION FOR THE REFLECTION
COEFFICIENT OF A LAYERED MEDIUM

A. V. Tikhonravov and I. V. Zuev

Applicability of the Kramers—Kronig relations to the problem of unambiguous
reproduction of the amplitude reflection coefficient from the energy reflection
coefficient for a layered medium is considered. Examples of nonuniqueness of the
solution are given. The conditions necessary for the existence of a one-to-one
correspondence between the amplitude and phase of the amplitude reflection
coefficient (the conditions for unambiguous reproduction of the amplitude re-
flection coefficient from the energy one) are determined. '

INTRODUCTION

The frequency (wavelength) dependence of the incident light reflection coefficient is an important phys-
ical characteristic of sutfaces, thin films, and coatings. Many techniques for determining and studying the
parameters of these objects are based on measuring this dependence. Generally, the amplitude refiection
coefficient r{ws) carries riore information about the object under study than the energy reflection coefficient
R{w). However, it is the latter quantity that is measured in the experiment.

The amplitude anc. energy reflection coefficients are related as

r(w) = (R)'V? - explip(w)},

where @(w) is the phas: shift in reflection, which will, for shortness, be called the phase of the reflection
coefficient in what follows. Sometimes there is an unambiguous relation between R(w) and w(w). The
corresponding equations are usually called Kramers-Kronig equations. They are extensively used in studying
surfaces and thin films [1-5], because they make it possible to reproduce the r(w) function from measurements
on R(w) and thus determnine the sought parameters of the objects of study.

In the simplest situation of a medium homogeneous across its depth, the conditions ensuring the
unambiguity are well known [6-7]. Of great practical importance is the determination of the conditions
for the existence of a one-to-one correspondence between R{w) and ¢{w) in more complex objects, such as
thin films and layered coatings. The frequency dependence of the reflection coefficients is then determined
not only by the dispersion properties of the optical parameters but also by interference effects. It is known
that, generally, there is no unambiguous relation between R(w) and p(w) for a layered medium. It has been
shown in [8] that the existence of such relation is closely associated with the arrangement of the zeros of
the amplitude reflection coeflicient of a layered medium in the complex plane of frequencies. The prime
objective of this work is to determine the conditions that should be imposed on layered medium parameters
to ensure a regular arrangement of these zeros, so that R(w) and ¢{w) be related unambiguously. We do not
take account of the dispersion of layered medinm optical parameters and assume the frequency dependence
of the reflection coefficient to be fully determined by interference effects.

I. TRANSFORMATIONS OF LAYERED MEDIUM PARAMETERS INVARIANT
WITH RESPECT TO THE ENERGY REFLECTION COEFFICIENT

Consider normal incidence of a plane electromagnetic wave on a layered medium with a refractive index
n(z} (the OZ axis coinc.des with the direction of medium stratification). Let § and z, be the coocrdinates
of the boundaries betwe:n the lavered medium and the substrate and external medium, respectively. The
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refractive indices of the substrate and external medium are constant and equal ng and ng, respectively, and
the magnetic permeability g is 1. Maxwell’s equations then take the form

dE/dz = ikH,  dH[dz = ik(n(z))?E, (1)

where E and H are the complex amplitudes of the electric and magnetic fields, respectively, and k =w/c is
the wave number in vacuum. Introducing the substitutions

2

z(z) =fn(z) dz, yi(z, k) = E(z, k), ya(z, k) = noH(z, k) (2)
0

for the variable and functions transforms set (1} into

dyr fdz = tkp(z)ya, dya/dz = ikxy /p{z), (3)

where p(z) = ng/n{z) is the wave resistance of the layered medium.
Let 31 o(z, k) be a solution to set (3) with the initial conditions

(0, k) =1, (0 k=1 ' )

The amplitude reflection coefficient is then given by [9]:

Sy Wi(Ta, B) = poya(za, K} -
(k) = vi(za, k) + poye(Za, k)’ ®

Za

where z, = /n(z) dz is the optical thickness of the layered medium, and pg = ng/n,.

Studyir(:g the properties of the amplitude reflection coefficient requires a transition from real wave
numbers k to the complex plane of wave numbers v = k + ig. Let r{r) be the analytic continuation of the
r(k) function into this complex plane. Set (3) will further, where necessary, also be considered to involve
complex wave number v values in place of real k ones.

The analytic properties of the #(v) function were studied in detail in [9]. The results necessary for our
purposes are as follows: ' '

1) »(#) is a meromorphic function;

2) r*(v) = r(—v"), the zeros and poles of the amplitude reflection coefficient are symmetric with respect
to the imaginary axis of wave numbers;

3) In the Imwy < 0 region, the r{v) function has no poles.

The amplitude reflection coefficient on the real axis of wave numbers will be written

r(k) = |r(k)|exp{ip(k)}.

As mentioned above, in the general case, there is no unambiguous relation between |r(k)| and (k).
Amplitude reflection coefficient transformations invariant with respect to the modulus of this coefficient on
the real axis of frequencies were studied in [8], where formulas describing the corresponding variations in the
wave resistance of a layered medium (the refractive index) were also obtained. The principal result that will
be used below is as foliows.

Theorem 1. Lef r(r) be the amphitude reflection coefficient of a layered medium with the wave re-
sistance p{z), and let vy and v be a pair of zeros of r(v) in the upper half-plane of wave numbers. The
function
(v + v —v3)
(v = vo)(v + )

) =

is then the amplitude reflection coefficient of the layered medium with the wave resistance p(z) = p{z)pu’(z),
where p{x) wrilten in terms of soluiions fo set (3) has the form

r(v) (6)

u(z) = Relvoyi(z, vo)y2(z, va)l/Re[vom(z, vo)yz(z, vo)]. (7)
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It is easy to see that transformation (8) is invariant with respect to the modulus of the amplitude
reflection coefficient on the real axis of wave numbers. Note also that this transformation transfers the pair
of zeros of the amplitude reflection coefficient into the symmetrically related points on the lower half-plane.

To demonstrate the nonuniqueness of the relation between |r(k}| and (%), consider a monolayer coating
with a constant refractive index, n{z) = const. Then -

_ (ng = ng)cos(ynz,) — i{ngng/n — n)sin(vnz,)
T (ng + ng) cos(vnz,) ~ i(nona/n + n)sin{vnz,)

(v}
The zeros of the amplitude reflection coefficient in the complex plane of wave numbers are the points

Vi = 7(L +2m)/(2n25) + iIn[(no — n)(n + na))/{(n — na)(no + n)]/(2nz,),

where m = 0, +1, £2, ....
Thus, the zeros of .he amplitude reflection coefficient are situated on an axis parailel to the real axis
k, symmetrically with respect to the imaginary axis, and with a constant spacing of (7/nz,).
Note that the zeros of the r{v) function occur in the upper half-plane of the wave number v (Fig. 1) if
(a) nang > n?, n > ng, and (b} nany < 0%, n < ng,
and they occur in the lower half-plane if
{€) ngrig > n?, n < ng, and (d) nyng < n2, n > ny.
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Inequalities (b) and (¢) correspond to situations most interesting practically, because the refractive
index of the substrate is usually larger than that of the external medium. -

Consider two monolayer coatings with the refractive indices n; > (ngn¢)1/ 2 and ny = non,/ny (clearly,
ny < (ngnp)*/?). Let the layers have the same optical thicknesses. It is easy to see that the zeros of the
amplitude reflection coefficient corresponding to the first coating are then symmetric with respect to the zeros
of the reflection coefficient of the second coating (see Fig. 1), the moduli of the two amplitude reflection
coefficients are equal to each other, and the phases are different. This simplest example clearly demonstrates
the nonuniqueness of the relation between |r(£)| and ¢ (k).

As follows from the theorem given above and the example just considered, there is no one-to-one
correspondence between r(k)| and @(k), because the zeros of the amplitude refiection coefficient can be
situated in both the upper and the lower complex half-planes of wave numbers.
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Fig. 2

To determine the conditions ensuring a certain regularity in the arrangement of the zeros of r(v)
(specifically, the absence of zeros in the upper or lower half-plane), consider the effect produced on layered
medium parameters by transfer of one or more pairs of reflection coefficient zeros from the upper half-plane
to the lower one.

Figure 2 demonstrates variations in the refractive index of a monolayer coating with ng > n, >
(nona)t/? caused by transfer of the first (curve 1) and second (curve 2) pairs of zeros marked in Fig. 1 into
the lower half-plane. The calculations were made according to Eq. (7) and the generalization of this equation
to the case of transfer of several pairs of zeros. Figure 2 shows that transfer of only the first pair of zeros
immediately breaks the condition n(z) > (ngng)/%. It is therefore only reasonable to suggest that meeting
this condition is one of the principal requirements ensuring regularity in the arrangement of r(v) zeros.

For elucidating in more detail the relation between the arrangement of r(v) zeros and the restrictions
on the optical parameters of the layered medium, it is expedient to consider separate classes of layered
structures.

2. ANALYSIS OF THE ARRANGEMENT OF REFLECTION COEFFICIENT
ZEROS IN THE COMPLEX PLANE OF WAVE NUMBERS FOR VARIOUS
CLASSES OF LAYERED STRUCTURES

We begin our analysis of possible arrangements of r(i) zeros with layered systems characterized by a
piecewise constant distribution of parameters. This can conveniently be done by considering the so-called
admittance phase plane. Let us introduce the A(z,v) = noyi(z, v)/y=(z, ) admittance, where y,(z,+) and
y2(z,v) are solutions to set (3). 1t follows from Eq. (5) that the amplitude reflection coefficient expressed
via the admittance has the form
ng — A{za, v)

ng + Alzq, V) ®)

r{v) =

Using set (3) and initial conditions (4) readily yields the admittance of any layered structure with an arbitrary
dependence n{z) in the form

dA/dz = iv(n(2) = A%z, 1)) (9

with the initial condition
A(G, v) = ng. (10)

-Here, we are considering a piecewise constant n{z) function, which successively takes on the values
Ny, Na,.... :

A solution to differential equation (§) with initial condition (10) gives a curve in the complex admittance
plane. This curve is conventionally called the admittance phase trajectory. It is easy to check that solution (9)
for an arbitrary homogeneous layer with a constant refractive index n and the initial condition A(%,v) = A
in the interval z € [, 2] is '

Az v) = insin(va(z — 7)) + A cos(va(z — 7))
T cos(vn(z — 7)) + iAsin(vn(z — 3))/n
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The portion of the phase curve, with a real wave number k(v = k), described by this equation can be
shown to occur on a cixcle of radius R, the center of which £ is situated on the real axis in the complex
admittance plane:

A? 4 n? A? —n?
Hin g =l
2Re A 2Re A

For example, for a two-layer system we obtain a phase trajectory formed by arcs of two circles corre-
sponding to the n; and ny values (Fig. 3).

For a two-layer system to have a zero reflection coefficient at a given k = k; value, it is necessary and
sufficient that A(z4, ko) be equal to ng (see Fig. 3). This means that with & = kp, the admittance phase
trajectory starts at the point np and ends at the point n;. The problem of obtaining a zerc amplitude
reflection coefficient at a given value of the wave number v using two-layer systems was studied in detail
(see, e.g., [10]). It is kncwn that there is a wide range of n; and n; values within which the two-layer systems
with layers of certain thicknesses are translucent, that is, have a zero reflection coefficient.
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It appears that if for soine layered system the zero of the amplitude coeflicient is situated on the real
axis of frequencies, small variations in the thickness of the layers can shift this zero to either the lower
or the upper wave-numbder half-plane. According to the results described in the preceding section, this
means that such classes of multilayer systems can by no means satisfy the conditions ensuring a one-to-one
correspondence between R(w) and @(w)}. This property of the arrangement of zeros is established by the
following theorem.

Theorem 2. Lef a layered sysiem with a piecewise constant n(z) function have a zero of the amplitude
reflection coefficient on the real wave number axis al point kg, and let af least one of the layers have an
optical thickness not muitiple of {(w/2kq). Then for all ¢ € (—aq,00), where g is q fairly small real number,
there ezists a layered system with the same refractive indices of the layers as those tn the initigl system, and
the amplitude reflection coefficient of this new system has a zero at kg =+ ic.

The proof (not given here} is based on the well-known Poincaré theorem on a continuous dependence
of the solution to a differential equation on the parameter.

The formulated theorem enables us to substantially narrow the range of layered systems among which
we should search for classes satisfying the condition that ensures the existence of an unambiguous phase-
amplitude relation for r(k}. Thus, numerous layeréd structures with nonmonotonic refractive indices n(z)
certainly do not satisfy this condition. Indeed, it has been shown [11] that a layered system with any
amplitude reflection coeTicient value, including zero, can be composed of layers with ouly two refractive
indices (ny and ns). This means that in a class of systems with refractive indices n(z) taking on two values,
ny and ns (no otlter condition need be imposed), there certainly exist layered systems whose amplitude
reflection coefficient has zeros both on the real axis and in any of the two half-planes.

3. LAYERED STRUCTURES SATISFYING THE NECESSARY CONDITIONS
FOR ONE-TO-ONE CORRESPONDENCE BETWEEN THE MODULUS AND PHASE
OF THE AMPLITUDE REFLECTION COEFFICIENT

It foliows from the results described above that it is advisable to search for layered media satisfying the
conditions of unambiguit: of phase-amplitude relations in a class of systems with monotonic refractive indices
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not exceeding the {ng - na)lf 2 value. According to the theorem formulated above, the arrangement of zeros
of the amplitude reflection coefficient then exhibits regularity sufficient for the relation to be unambiguous.

Theorem 3. Let the refractive inder of a layered medium be a piecewise smooth funcilion of one of the
following four classes:

{a) n(z) s & monotonically nonincreasing function, and ng = n(z) 2 0" > (ng  na)? > ng;

(b) n(z) is a monotonically nondecreasing function, and ny < (np - ng)¥? < 1™ € n(z) < na;

(c) n(z) is @ monotonically nondecreasing function, and ng € n(z) < n* € (ng - ng )% < ny;

(d) n(z) is a monotonically nonincreasing function, and ng > (ng - 1,)¥2 > n* = n(2) 2 n,.

Then for the functions {b) end (d) the amplitude reflection coefficient r(v) has no zeres in the lower half-plane
of the compler wave number v, and for the functions (a) and (¢) there is no zeros in the upper halfplanc

The proof of this theorem is rather lengthy and is not given here.

Let us now show that for layered structures possessing the specified regularity in the arrangement of
zeros, the Kramers—Kronig relations are valid. We will only consider functions of class (a).

To use some of the results obtained in [9], let us assume in addition that »(z) is a smooth function with
zero derivatives at the points 0 and z; satisfying the condition n{0) = ng (the refractive index of the layered
medium is smoothly joined with the refractive index of the substrate). All the r{i) zeros are then situated
in the upper half-plane.

Let 7{v) be the amplitude reflection coeflicient of a layered medium with the index of refraction n{z),
and let the external medium be homogeneous and have the n(z,) refractive index. As has been shown in [12],
it follows from the general properties of layered systems that there exists a one-to-one correspondence between
the amplitude reflection coeflicients r(r) and F(v). We have

- Flv)+ro
rlv) = ————mrr,

2 1+ ror(v)
where rg is the amplitude coefficient of reflection from the boundary between the homogeneous media with
the refractive indices n{z,) and n,:

ro = [n(za) ~ nal/[n(24) + nal.

As has been shown in [9], the properties of the n(z) function specified above ensure the asymptotic behavior
#(v) = O(1/v?).of the 7(v) function in the lower half-plane. Therefore r(v) = ro+0O(1/1?) if v > 0. Consider
the In{r(v)) function in the upper half-plane. Because of the ahsence of »(1) zeros, this function is regular
flmer 2 0. When v — o0 and Imv 2 0§,

In(r()) = In{rg) + O(1/17).
Consider the ﬁln(r(v)/rg)(v — &) dv integral about closed path C shown in Fig. 4. By virtue of

c
regularity of the integrand within the region enclosed by C, we have

(/ +7R+ f + [ Vit -gav =0
Ca =R £+R G,

The meaning of the symbols §, p, and R is clear from Fig. 4.
Passing to the p — 0, R — oo limit and taking the asymptotic behavior of r(v) into account, we obtain

(o=}

f(ln(!r(f()l/ru )+ ip(k))/(k - £)dl—rﬂ'1nlr(€)[+w(5)

-0

Separating the real and imaginary parts of this equality yields
(=

@) =ex{ (1/m) - V.p. [ o)/ - )k },

-0

(€)= —(1/7) - V.p. ] In(|r(k)| /7o) /(k = €) k.
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Or, by virtue of the |r{- k)| = |r(k)| symmetry property on the real axis,

oD

1 = exp{ 26/m) - V.p. [ o)/ -,

0

#€) = —2€/7) - V.p. / In(jr()}/ro) /(8 - €2) dk.

A

Lo
= 7 £ Rk

Fig. 4

The derivation of the Kramers-Kronig relation for all other regular arrangements of () function zeros

is trivial.

Some final remarks should be made. As follows from Sections 1 and 2, the classes of structures that

have been considered in Section 3 and for which the Kramers-Kronig relations can be obtained can hardly
be extended considerably. The condition of smoothness of the n(z) function is significant for obtaining the
equations given above. Any refractive index breaks will affect the asymptotic behavior of the amplitude
. reflection coeflicient and, accordingly, cause changes of the Kramers—Kronig relations derived in this work.
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