В принципе не исключено, что источником сигнала 180 нм могут быть молекулы I_2^* или их ван-дер-ваальсовы комплексы с атомами криптона (сведений об этом в литературе найти не удалось), если допустить, что возбужденные атомы или димеры криптона в столкновениях селективно заселяют какое-то из связанных состояний молекулы I_2^* . Но тот факт, что континуум 180 нм наблюдается и в случае смесей $K_T + CF_3 I$, заставляет с сомнением отнестись к данной верски.

Пожалуй, непротиворечивым представляется объяснение, согласно которому источником обнаруженного спектрального сигнала являются все же молекулы (KrI)*, а состояние, излучающее в указанном континууме, возникло как следствие взаимодействия одного из низших кулоновских состояний (B или C) и отталкивательного I*Kr (коррелирующего с возбужденным уровнем атома иода), имеющих одинаковую спин-орбитальную симметрию, в соответствии с правилом неперсечения термов. Схема потенциальных кривых, иллюстрирующая происхождение такого состояния, изображена на рис. 2. По-видимому, подобного рода взаимодействия могут служить причиной ненаблюдаемости переходов $B \rightarrow X$ (и других) молекул моногалогенидов неона (кроме NeF) и моноиодида аргона. По оценкам длина волны перехода $B \rightarrow X$ эксиплекса (ArI)* должна быть ~150 нм, однако обнаружить сигнал, который можно было бы отнести к этому переходу, не удалось. Побочным результатом работы можно считать наблюдение достаточно интенсивных континуумов переходов $B \rightarrow X$ молекул КгF и ArF в смесях Kr+CF₃I и Ar+CF₃I.

Условия проведения экспериментов, в том числе экспериментальная установка, были практически идентичными описанным ранее [5, 7]. Использовались инертные газы повышенной чистоты. Давление паров I₂ в разрядной ячейке не превышало 0,15 Тор. В смесях Кг+СГ₃I (а также He, Ar, Xe+CF₃I и Кг+донор OH) мольное соотношение компонентов составляло 100:1—200:1. Давление газа в ячейке варьировалось от 0,05 до 0,8 атм.

ЛИТЕРАТУРА

[1] Casassa M. P., Golde M. F., Kvaran A.// Chem. Phys. Lett. 1978. 59, N 1. P. 51. [2] Dunning T. H., Hay P. J.//J. Chem. Phys. 1978. 69, N 1. P. 134. [3] Hay P. J., Dunning T. H.//J. Chem. Phys. 1978. 69, N 5. P. 2209. [4] Goodman J., Brus L. E.//J. Chem. Phys. 1977. 67, N 11. P. 4858. [5] Власенко А. А., Лакоба И. С., Чернов С. П., Эссельбах П. Б.//ДАН СССР. 1986. 289, № 1. С. 79. [6] Hutchinson M. H. R.// Сhem. Phys. Lett. 1978. 54, N 2. P. 359. [7] Лозовский П. М., Чернов С. П., Эссельбах П. Б.//Квант, электроника. 1977. 4, № 7. С. 1606.

Поступила в редакцию 02.12.92

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1993. Т. 34, № 6

АКУСТИКА И МОЛЕКУЛЯРНАЯ ФИЗИКА

УДК 534.12

ВЛИЯНИЕ БОКОВОЙ ВОЛНЫ НА СТРУКТУРУ АКУСТИЧЕСКОГО ПОЛЯ В ЖИДКОМ СЛОЕ

А. В. Кондрашова, К. А. Пестов, О. С. Тонаканов

(кафедра акустики)

Теоретически рассмотрена горизонтальная и вертикальная структура звукового поля боковой волны, а также суммарное поле первой нормальной волны и боковой. Показано, что при некоторых условиях эксперимента существует необходимость учета влияния боковой волны на картину звукового поля.

Обычно при рассмотрении акустического поля в жидком слое ограничиваются дискретным спектром (суммой нормальных волн). Однако известно, что при нахождении поля точечного источника в слое методом разложения сферических воли на плоские кроме суммы мод имеется еще один член — так называемый сплошной спектр, который формирует дополнительный волновой процесс на границе вода грунт, именуемый боковой волной. В данном сообщении сделана попытка на основе работ [1-3] учесть в структуре акустического поля одновременно как нормальные волны, так и боковую волну. На основе результатов машинного счета представляются основные закономерности поведения боковой волны и суммарной структуры звукового поля с одновременным учетом сплошного и дискретного спектров для изоскоростного слоя. При этом дно и поверхность считаются плоскими, а грунт жидким и однородным. Плотность жидкости и скорость звука в водном слое ρ и с, в грунте соответственно ρ_1 и с. Ось z направлена вниз, z<0 соответствует воздушной среде, коэффициент отражения при z=0 $V_1=-1$; z=h (h — глубина слоя) соответствует границе вода—грунт, коэффициент отражения плоской волны V_2 зависит от угла падения θ . В точке r=0, $z=z_0$ расположен точечный источник сферической волны частоты f (волновой вектор $k=2\pi f/c$).

Как известно из литературы [1, 2], потенциал звукового поля, найденный методом разложения сферической волны на плоские, представляется в виде суммы потенциалов нормальных волн ψ_m и боковой волны $\psi_i: \psi = \psi_m + \psi_i$.

После разложения по большому параметру kr >> 1 аналитическое выражение для потенциала имеет вид

$$\psi_m = \sqrt{8\pi} \sum_j \frac{\sin l_j z \sin l_j z_0}{h - (k \nu/m)^2 (\sin h l_j / l_j)^3 \cos^{-1} h l_j} \frac{\exp \{l (m_j r + \pi/4)\}}{\sqrt{m_j r}}, \quad (1)$$

(2)

где $l_j = kh \cos \theta_j$; $n = k_1/k$; $v^2 = 1 - n^2$; $m_j = kh \sin \theta_j$; $m = \rho_1/\rho$. При условии $kh \gg 1$ [2] имеем

$$l_{j}=j\pi\left(1-\frac{m}{kh\nu}\right).$$

Потенциал же боковой волны при kr >1 будет иметь следующий вид:

$$\psi_I = \frac{2in}{kmr^2} \sin kvz \sin kvz_0 \exp \{iknr\} I,$$

где

$$l = -\frac{4iq^2}{\sqrt{\pi}v^2\cos^2 khv} \int_0^{\infty} \frac{s^2 \exp\{-s^2\}}{s^2 + iq^2} ds,$$
$$q^2 = \frac{kr}{2\pi} \frac{v^2m^2}{\mathrm{tg}^2 knv - khvm^2 \mathrm{tg} khv}.$$

Ясно, что существует связь между поведением боковой волны и величиной и знаком безразмерного параметра q^2 , который определяется волновым параметром kr и соотношением характеристик слоя. От знака q^2 зависит сходимость и, следовательно, выбор ряда для численного расчета интеграла l из (2). Представив $I = -\frac{\ell l}{v^2 \cos^2 khv} K(q)$ и обозначие $q_0 = \sqrt{|q^2|}$, имеем

$$q^{2} > 0; \ K(q) = 2iq_{0}^{2} \left\{ 1 - 2q_{0} \exp\left\{i\left(q_{0} + \frac{\pi}{4}\right)\right\} \times \left(\frac{\sqrt{\pi}}{2} - \exp\left\{-i\left(q_{0}^{2} - \frac{\pi}{4}\right)\right\} \sum_{j=0}^{\infty} \frac{(2q_{0}^{2}i)^{j}}{1 \cdot 3 \dots (2j+1)}\right) \right\},$$
$$q^{2} < 0; \ K(q) = -2iq_{0}^{2} \left\{1 - \sum_{j=0}^{\infty} (-1)^{j} \frac{1 \cdot 3 \dots (2j+1)}{2^{j} (q_{0} \exp\left\{-i\pi/4\right\})^{2j}}\right\}.$$

Рассматривая асимптотику (она совпадает и при $q^2 > 0$ и при $q^2 < 0$), получаем $|q^2| \gg 1$, $I = -\frac{1}{(v^2 \cos^2 khv)}$, $|q^2| \ll 1$, $I = -\frac{ikrm^2}{h}$.

Таким образом, можно рассмотреть поведение боковой волны в зависимости от расстояния r до источника ($kr \gg 1$), или, что тоже представляет интерес, на не-котором фиксированном расстоянии ($kr_0 \gg 1$) [3] при изменении частоты источника вблизи одной из критических частот дискретного спектра $(|q^2| \ll 1)$. Пока частота меньше критической и не слишком к ней близка, $q^2 \gg 1$ и потенциал скорости $\psi_i \sim$ $\sim 1/r^2$, с приближением к критическому значению $q^2 \rightarrow 0$, $\psi_l \sim 1/r$, т. е. величина поля возрастает на порядок относительно r. После того как частота превысила критическую, q² снова возрастает, а ψ_l убывает, становясь опять порядка $1/r^2$. Но в суммарном поле это убывание компенсируется полем появившейся нормальной волны, амплитуда которой имеет порядок $1/\sqrt{r}$.

Рис. 1. Амплитуда давления боковой волны Р как функция расстояния от источника до приемника (частота 39,95 Гц, глубина при-емника z=2,5 м, глубина источника: $z_0=5$ (1), 150 (2) и 295 м (3); параметры слоя: $\rho_1/\rho = 1.95; c/c_1 = 0.85;$ глубина h = 300 м)

Рис. 2. Вертикальная структура поля давления Р (амплитуда) боковой волны (частота 14 Гц, расстояние от источника до приемника r=150 м, глубина источника и параметры слоя — как на рис. 1)

Рис. 3. Амплитуда суммарного поля звукового давления Р' на частоте 14 (а) и 28 Гц (б) первой нормальной моды и боковой волны как функция удаления от источника (глубина источника $z_0 = 150$ м, глубина приемника 25 м, параметры слоя — как на рис. 1)

На основании изложенного составлена программа и проведен расчет акустического поля в слое как суммы мод и боковой волны. В качестве примера приводим вид поля при глубине слоя 300 м для песчаного грунта (n=0,85).

На рис. 1 представлены зависимости убывания поля боковой волны с расстоянием г от источника. Видно, что амплитуда давления плавно спадает с расстоянием, причем при величине параметра $q^2 \ll 0.01$ $(r < r_1)$ — по закону 1/r, а при $q^2 \gg 9$ $(r > >r_2)$ — по закону $1/r^2$. Зависимость от глубины погружения источника z_0 учитывается множителем $\sin kvz_0$.

При вертикальном разрезе слоя (рис. 2) у поля звукового давления боковой волны появляются экстремумы, аналогичные случаю обычных нормальных волн. Величина максимумов одинакова, так как потери в слое не учитываются, а их число определяется соотношением длины волны λ и глубины слоя h.

Рассматривая амплитуду давления суммы первой моды и боковой волны (рис. 3) в зависимости от расстояния *г*, следует обратить внимание на явно модуляционный вид суммарного поля, причем огибающая имеет пространственный период.

Рис. 4. Амплитуда суммарного поля звукового давления P''как функция удаления от источника при многомодовом распространении с учетом боковой волны (частота 14 Гц, глубина источника $z_0=150$ м, глубина приемника z=25 м, параметры слоя — как на рис. 1)

соответствующий разности горизонтального волнового числа первой моды и проекции волнового вектора боковой волны на горизонтальное направление. Частота заполнения совпадает с частотой излучаемого звука.

На рис. 4 представлено суммарное поле мод и боковой волны в зависимости от расстояния (число распространяющихся нормальных воли велико). Заметим, что биения, связанные с присутствием боковой волны, не обнаруживаются, а лишь определяют максимальную амплитуду поля, причем влияние боковой волны весьма мало. Следовательно, обычное представление акустического поля в слое только суммой нормальных воли можно считать достаточно оправданным и применимым для большинства исследований. В случае присутствия только первой моды и при некотором расстоянии между источником и приемником роль боковой волны может оказаться существенной, и ее надо учитывать.

ЛИТЕРАТУРА

[1] Бреховских Л. М. Волны в слоистых средах. М., 1973. [2] Рожин Ф. В., Тонаканов О. С. Общая гидроакустика. М., 1988. [3] Газарян Ю. М.//Акуст. журн. 1958. 4, № 3. С. 233.

Поступила в редакцию 21.06.93