ТЕОРЕТИЧЕСКАЯ И МАТЕМАТИЧЕСКАЯ ФИЗИКА

УДК 536.24.02+519.6+518.0

ОБРАТНАЯ ЗАДАЧА ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ФАЗОВОГО ПРЕВРАЩЕНИЯ В СТАЛИ ДЛЯ МОДЕЛИ ШЕЙЛА

В. Б. Гласко, А. В. Щенетилов (кафедра математики)

В теории аустенитного распада эвтектоидных сталей известна феноменологическая модель, основанная на принципе аддитивности и содержащая два функциональных параметра. Предлагается численный алгоритм решения обратной задачи нахождения этих параметров по температурному режиму элемента материала, основанный на последовательной минимизации функционалов невязки и качества эксперимента. Приводятся результаты модельных численных расчетов.

1. В работах [1, 2] изучалась возможность моделирования аустенитно-перлитного фазового превращения в стали на основе уравнения

$$\int \frac{d\xi}{\tau(\theta(\xi), F(t))} = 1, \quad t \in R_+, F(0) = 0,$$
(1)

где $\theta(t)$ — температура, F(t) — доля перлита в элементе образца в момент времени t, $\tau(\theta, F)$ — время образования доли перлита F при температуре θ . Необходимость согласования (1) с уравнением Джонсона—Мела—Аврами для изотермического превращения

$$F_{\theta}(t) = 1 - \exp\left\{-b(\theta) t^{a(\theta)}\right\}$$

диктует для $\tau(\theta, F)$ вид

$$\tau(\theta, F) = \left[-\frac{\ln(1-F)}{b(\theta)}\right]^{1/a(\theta)}$$

Предполагается, что параметры процесса $a(\theta)$ и $b(\theta)$ известны из изотермического эксперимента [1] либо постулируются на основе теоретических предпосылок [3]. В этом случае задача моделирования процесса при заданном температурном режиме $\theta = \theta(t)$ сводится к решению интегрального уравнения (1) относительно F(t).

На практике такого рода процессы происходят в сплошных средах некоторых металлических образцов, так что температурный режим оказывается зависящим от координат точки: $\theta = \theta(\mathbf{x}, t)$, $\mathbf{x} \in \Omega \subset E^3$ и определяется как внутренними источниками, связанными с распадом аустенита, так и граничными условиями. Для этого случая уравнение (1), дополненное уравнением теплопроводности

$$\frac{\partial \theta}{\partial t}(\mathbf{x}, t) = k \Delta \theta(\mathbf{x}, t) + e \frac{\partial F}{\partial t}(\mathbf{x}, t), \qquad (3)$$

где *е* — тепловыделение при фазовом переходе, приводит к краевой задаче для интегро-дифференциальной системы, разрешимость которой исследована в [4].

Решение системы (1), (3) при соответствующих граничных условиях дало бы информацию о скорости изменения температурного поля в различных точках образца с учетом фазовых превращений, важную, например, для управления процессом закалки его приповерхностных

(2)

слоев и получаемую обычно на основе обработки большого числа экспериментальных данных, отраженных в «термокинетических диаграммах» [5]. Однако решение задачи (1), (3) в неизотермическом случае предполагает знание параметров фазового превращения $p'=\{b, a\}$, информация о которых в технологической литературе [6] разноречива. В этой связи в работе [7] была сформулирована обратная задача об определении $p'=p'(\theta)$ по заданной информации о температурном режиме и кинетике перлитной фазы, которые связаны с p' уравнением (1). Для такой обратной задачи была рассмотрена проблема единственности. Установлена, в частности, ее однозначная разрешимость в классе аналитических функций $p'(\theta)$, а также в случае дифференцируемости функции $b(\theta)$ и a=const. Для этого последнего случая в настоящей работе предлагается численный алгоритм для определения p', устойчивость которого к погрешностям измерения температуры проверена экспериментально.

2. Поскольку искомый параметр р' зависит только от температуры, задача о его определении может быть связана с моделью охлаждения элемента материала и тем самым с некоторой задачей Коши для обыкновенного дифференциального уравнения:

$$mc \frac{d\theta}{dt} = e \frac{dF}{dt} - Q, \ \theta(0) = \theta_0, \ 0 < t \leq T,$$
(4)

где m — масса элемента, c — его теплоемкость, edF/dt — тепловыделение за счет фазового превращения, Q — теплоотдача во внешнюю среду, соответствующая, например, закону Ньютона: $Q=h(\theta-\theta(t))$, где $\hat{\theta}(t)$ — температура внешней среды. Учитывая, что доля перлита F(t)труднодоступна прямым измерениям, в отличие, например, от температуры внешней среды и элемента, мы будем предполагать, что входными данными задачи является эквивалентная пара $q = \{\theta(t), \psi(t)\}$, где $\psi(t) = \frac{1}{mc} \int_{0}^{t} Q(\xi) d\xi$. Тогда, интегрируя (4) в соответствии с (2), при

 $a(\theta) = a = \text{const}$ имеем

$$\theta(t) = \theta_0 - \psi(t) + \gamma F_\theta(t, p), \quad 0 \le t \le T,$$
(5)

).

где

$$F_{\theta}(t, p) = \left(1 - \exp\left\{-\left(\int_{0}^{t} \beta(\theta(\xi)) d\xi\right)^{a}\right\}\right),$$

$$\gamma = \frac{e}{mc}, \ \beta(\theta) = \left[b(\theta)\right]^{1/a}, \ p = \{b(\theta), a\}.$$

В технологических задачах область перлитного превращения [p₁, p₂] может быть априорно задана. Поэтому будем считать, что

$$p = \{\beta(\theta), a\} \in C_0[\rho_1, \rho_2] \times R_+ = P,$$

функция $\psi(t)$ задается априорно, а $\theta(t)$ — измеряемая (возможно, сошибкой) величина. Пусть A_{ψ} — оператор, ставящий в соответствие параметру *р* решение $\theta(t)$ уравнения (5). В соответствии с [7], если $\psi(t)$ таково, что

$$\frac{d}{dt}(A_{\psi}p) = \theta'(t) < 0, \ \theta(0) \ge \rho_2, \ \theta(T) \le \rho_1,$$

то \bar{p} определяется из уравнения $\theta(t) = A_{\psi}p$ однозначно. Однако при практическом решении обратной задачи определения p мы не будем требовать, чтобы $\theta'(t) < 0$. Если измеряемая температура $\theta(t) \not \equiv A_{\psi}P$, то необходима вариационная постановка задачи определения p:

$$p = \underset{\widetilde{\rho} \in P}{\operatorname{arginf}} \int_{0}^{T} (\theta(t) - A_{\psi} \widetilde{\rho}(t))^{2} dt.$$
(6)

В постановке (6) задача неустойчива относительно $\beta(\theta)$ и для ее решения необходимо использование некоторого регуляризирующего оператора [8], например дополнение функционала невязки в (6) до сглаживающего функционала Тихонова. В этом случае можно использовать стабилизатор $\Omega(\beta) = \int_{0}^{\rho_{2}} [\beta'(\theta)]^{2} d\theta$, так как $\beta(\rho_{1}) = \beta(\rho_{2}) = 0$.

Наибольшую, однако, трудность при решении рассматриваемой задачи представляет проблема ее «разрешающей способности». Дело в том, что при заданном произвольно режиме охлаждения $\psi(t)$, как показали численные эксперименты, выделение тепла, сопутствующее перлитному превращению, как правило, заметно влияет на температуру элемента лишь в узкой области сегмента [ρ_1 , ρ_2], зависящей еще и от *р*. Для повышения разрешающей способности задачи (6) необходимо за счет подбора $\psi(t)$ «размазать» тепловыделение на весь интервал [ρ_1 , ρ_2] более или менее равномерно. Можно это сделать, рассмотрев отображение

$$\mathcal{A}_{\Psi}(p): p \to \{A_{\psi_1}p, \ldots, A_{\psi_m}p\},\$$

где $\Psi = \{\psi_1, ..., \psi_N\}.$

Тогда функционал квадратичной невязки будет иметь вид

$$\Phi_{\Psi}(\widetilde{p}) = \sum_{k=1}^{N} \int_{0}^{T} \left[\theta_{k}(t) - A_{\Psi_{k}}\widetilde{p}(t)\right]^{2} dt,$$

где $\theta_k(t)$ — «измеряемая» функция в «эксперименте», моделируемом отображением $A_{\Psi_k}p$. Для управления режимами Ψ введем неотрицательный функционал $K_p(\Psi)$, обращающийся в нуль лишь при равномерном распределении приращений функции тепловыделения

$$V(t) = \sum_{k=1}^{N} v_{k}(t), \text{ rge } v_{k}(t) = \theta_{k}(t) - \theta_{0} + \psi_{k}(t) = \gamma F_{\theta_{k}}(t, p),$$

рассчитываемый из (5) на интервале [ρ_1 , ρ_2]. Конкретное описание использованного в численных расчетах $K_p(\Psi)$ будет дано ниже.

Возможен следующий процесс поиска *p*. Пусть задано начальное *p*₀. Тогда

$$\Psi_{s} = \underset{R}{\operatorname{arginf}} K_{p_{s}}(\Psi),$$

$$p_{s+1} = \underset{P}{\operatorname{arginf}} \Phi_{\Psi_{s}}(p),$$
(7)

где R — некоторая область изменения режимов, причем для каждого $s \ge 1$ по рассчитанному Ψ_s проводится «эксперимент», моделируемый отображением $\mathcal{A}_{\Psi_s}(\hat{p})$, где \hat{p} — точное значение p для снятия новой входной информации, соответствующей режимам охлаждения Ψ_s . В качестве критерия останова итеративного процесса выбирается малость

величины $\|p_{s+1}-p_s\|$. Ясно, кроме того, что минимизацию Φ в (7) совсем не обязательно проводить с точностью, определяемой точностью экспериментальных данных для всех *s*. Несколько начальных шагов по *s* можно сделать «грубо», чтобы дать возможность Ψ качественно подстроиться к \hat{p} .

3. В проведенных расчетах мы ограничились сравнительно небольшим числом точек, аппроксимирующих $\beta(\theta)$. Это позволяет восстановить грубую структуру β(θ) без использования регуляризации. Естественно ожидать, что при использовании мощной вычислительной техники и повышении точности аппроксимации β(θ) в рамках предлагаемой вычислительной схемы удастся восстановить и более тонкую структуру $\beta(\theta)$ (возможно, и $\alpha(\theta)$), но уже с использованием стабилизатора Тихонова. Реально $\beta(\theta)$ задавалась на равномерной в [ρ_1 , ρ_2] сетке, состоящей из $M \approx 10$ точек, и линейно интерполировалась между ними. На временной оси равномерная сетка состояла примерно из 200 точек, уравнение (5) решалось методом сжимающих отображений, а начальное приближение определялось из (5) «заморозкой» теплового источника на один временной шаг. Все интегралы аппроксимировались по формуле Симпсона. Режимы $\psi(t)$ были выбраны кусочно-линейными и значения $\psi'(t)$ варьировались на интервалах линейности (в расчетах использовалось 5 интервалов). Минимизация функционалов Ф и К осуществлялась безградиентным методом Розенброка с построением нового базиса по формулам Палмера [9].

Функционал $K_{\rho}(\Psi)$ строился следующим образом. Пусть $\eta_1 = \rho_1$, η_2 , η_3 , ..., $\eta_M = \rho_2$ — равномерное разбиение отрезка [ρ_1 , ρ_2] с шагом $\Delta \eta$. Пусть F_{ik} — доля приращения содержания перлита $F_{\theta}(t, p)$ при

режиме охлаждения
$$\psi_k(t)$$
 за то время, пока $\theta(t) \in [\eta_i, \eta_{i+1}], i = \overline{1, M-1},$
a $f_i = \sum_{k=1}^N F_{ik}$. Пусть $\sigma = \sum_{i=1}^{N-1} f_i, \tilde{f} = \frac{\sigma}{M-1}$, тогда $\sigma \ll N$, так как $F(t) \ll 1 \forall t$.

Выбор Ψ подчиним а) требованию максимальной равномерности превращения по температуре, выраженному условием минимальности уклонения f_i от \overline{f} , i = 1, M - 1; б) требованию возможно более полного фазового перехода, выраженному условием минимальности уклонения σ от N. Оба этих условия формализуются с помощью целевого функционала, зависящего от p и Ψ :

$$K_{p}(\Psi) = \sum_{i=1}^{M-1} \varphi_{1}(f_{i} - \overline{f}) + \varphi_{2}(N - \sigma),$$

где φ_i , i=1, 2 — выпуклые неотрицательные функции, $\varphi_i(0)=0$. Для конкретных расчетов φ_i выбирались кусочно-линейными. Заметим, что К не зависит от «экспериментальной информации» явно и его минимизация не требует проведения эксперимента. Характерное время $T(\theta)$ полного изотермического превращения составляет ~10 с в центральной области отрезка $[\rho_1, \rho_2]$ и не ограничено вблизи ρ_1 и ρ_2 , но множество { $\theta \in [\rho_1, \rho_2]$, $T(\theta) < 10^3$ с} лишь незначительно меньше [ρ_1, ρ_2] [1]. Поэтому при проведении расчетов мы полагали 10-3 с-1 ≤ β (θ) ≤ ≪10⁻¹ с⁻¹. При охлаждении образцов с различной скоростью доминирующее влияние на превращение оказывают значения β(θ) из различных температурных интервалов (не обязательно тех, где $\beta(\theta)$ наибольшая), поэтому мы контролировали качество определения $\beta(\theta)$ чеδβ (θ)____ $\Delta\beta \equiv max$ где $\delta\beta(\theta)$ — погрешность опредерез величину [ρ₁,ρ₂] β (θ)

ления $\beta(\theta)$. Времена протекания процесса превращения T_k , соответствующие $\psi(t) = \psi_k(t)$ в (5), должны быть согласованы с искомым \hat{p} , что достигается их согласованием с уже найденным p_s следующим образом. Поскольку $\beta(\theta)$ имеет ярко выраженную форму «шапочки», то для ее определения выбиралось 3 режима охлаждения, обеспечивающих максимальную скорость фазового перехода в соответствующих областях температур θ : до максимума параметра $\beta(\theta)$, вблизи максимума $\beta(\theta)$ и после максимума $\beta(\theta)$. Именно, пусть уже найденному p_s отвечает $\beta_s(\theta)$, тогда эти области суть $[\rho_1, \rho^*]$, $[\rho^*, \rho^{**}]$, $[\rho^{**}, \rho_2]$, где

$$\beta_{\max} = \max_{[\rho_1, \rho_2]} \beta_s(\theta) = 3\beta_s(\rho^*) = 3\beta_s(\rho^{**}), \ \rho^* < \rho^{**}.$$

Здесь вместо множителя 3 может быть принят любой другой разумный критерий разделения областей. Тогда

$$T_1 = \max_{\{\rho_1, \rho^*\}} 1/\beta_s(\theta), \ T_2 = 1/\beta_{\max}, \ T_3 = \max_{\{\rho^{**}, \rho_2\}} 1/\beta_s(\theta)$$

-- времена охлаждения для проведения следующего «эксперимента». Результаты восстановления \hat{p} в соответствии с описанным алгорит-

=370 °С, ρ_2 =730 °С. Для перевода физических значений $\beta(\theta)$ в графические координаты на рис. 1 использовалась функция $\ln(\beta(\theta) + \beta_{\min})$, $\beta_{\min}=10^{-3}$ с⁻¹. Кроме $\hat{\beta}$ и приближений к нему на рис. 1,2 представлены гистограммы фазового перехода f_i , по которым строится функционал $K_p(\Psi)$. На рис. 1 представлены гистограммы фазового перехода,

*соответствующие точным значениям $\beta(\theta)$ для режимов охлаждения, полученных при минимизации $K_{p_0}(\cdot)(a), K_{p_1}(\cdot)(6)$ и $K_{p_2}(\cdot)(\theta)$. Видно, что точность нахождения $\beta(\theta)$ в некоторой точке растет вместе с рос-

том доли фазового превращения вблизи этой точки, а для приведенных гистограмм характерно «расплывание» в интервале [ρ_1 , ρ_2] с ростом s, что приводит к удовлетворительному восстановлению $\beta(\theta)$ и a. На рис. 2 представлена зависимость точности восстановления $\beta(\theta)$ от систематической погрешности задания $\theta(t)$. Здесь $||\Delta\theta||$ означает равномерную норму. Из рис. 2 следует, что задание $\theta(t)$ с точностью 10^{-1} °C в рамках рассматриваемой модели обеспечивает восстановление $\beta(\theta)$ с ошибкой не более 7%.

Рис. 2. Зависимость точности восстановления величины β от погрешности задания температуры θ

В заключение авторы выражают благодарность проф. А. Г. Свешникову за плодотворные обсуждения работы.

ЛИТЕРАТУРА

[1] Agarwal P. K., Brimacombe J. K.//Metall. Trans. 1981. **B12**. P. 121. [2] Hawbolt E. B., Ghau B., Brimacombe J. K.//Metall. Trans. 1983. **A14**. P. 1803. [3] Avrami M.//J. Chem. Phys. 1939. 7. P. 1103; 1940. 8. P. 212. [4] Vi sintin A.//IMA J. Appl. Math. 1987. 35. P. 143. [5] Попов А. А., Попова Л. Е. Изотермические и термокинетические диаграммы распада переохлажденного аустенита. М., 1965. [6] Блантер М. Е. Фазовые превращения при термической обработке стали. М., 1962. [7] Гласко В. Б., Щепетилов А. В.//ЖВМ и МФ. 1991. 31, № 12. С. 1826. [8] Тихонов А. Н., Арсенин В. Я. Методы решения некорректных задач. М., 1974. [9] Химмельблау Д. Прикладное и нелинейное программирование. М., 1975.

Поступила в редакцию 24.03.93

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1994. Т. 35, № 1

УДК 517.532.5

О ЯВЛЕНИИ КВАЗИФРОНТА В НЕСЖИМАЕМОЙ СТРАТИФИЦИРОВАННОЙ ЖИДКОСТИ

Х. Б. Аллахвердиев, Ю. Д. Плетнер, М. А. Соловьев

(кафедра математики)

Изучаются особенности распространения нестационарных внутренних волн от точечного источника мгновенного действия в несжимаемой стратифицированной жидкости. Полученные численные результаты дают возможность изучить структуру квазифронта, распространяющегося от источника в «небуссинесковской» жидкости и провести сравнения с волновой картиной в приближении Буссинеска.

1. Введение

Задачи теории нестационарных внутренних волн в стратифицированных и вращающихся жидкостях продолжают привлекать внимание исследователей, с одной стороны, в силу их прикладной значимости, а