УДК 669.24:669:25

мартенситные превращения в неоднородных твердых PACTBOPAX CUCTEMЫ TiNi-V

А. С. Илюшин, А. Г. Хунджуа, М. М. Муслим (кафедра физики твердого тела)

Показано, что в неоднородных твердых растворах, формирующихся в процессераспада пересыщенной метастабильной B2-фазы, существенно меняются такие характеристики мартенситных превращений, как точки переходов, гистерезис, последовательность превращений.

Эффекты памяти формы, обусловленные мартенситными фазовыми превращениями, наблюдаются во многих металлических сплавах. Наиболее интересными с точки зрения применения являются никелид титана и сплавы на его основе. Легирование никелида титана позволяет регулировать температурный интервал формовосстановления, однако здесь препятствием является незначительная растворимость большинства элементов в никелиде титана. Закалка из жидкого состояния дает возможность повысить растворимость и получать пересыщенные однофазные твердые растворы с кристаллической структурой. Такие твердые растворы могут распадаться, становясь неоднородными, и менять свои свойства в процессе эксплуатации изделий как в области повышенных температур, так и при естественном старенки. Следует отметить, что применение изделий из никелида титана в медицине [1] накладывает жесткие условия на неизменность характеристик в течение длительного времени эксплуатации при 36,6 ℃.

В настоящей работе исследовано влияние естественного старения на структурное состояние и мартенситные превращения в сплавах $Ti_{48}Ni_{48}V_4$ и $Ti_{46}Ni_{46}V_8$, полученных закалкой жидкости со скоростью 106 К/с по стандартной меродике [2]. Характеристические мартенситные точки определялись методом низотемпературной рентгеновской дифрактометрии в интервале температур 5÷300 К.

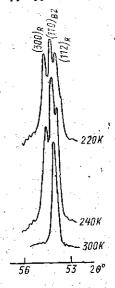
По данным электронной микроскопии непосредственно после закалки из жидкого состояния сплавы представляют собой однофазные твердые растворы с упорядоченной ОЦК В2-структурой. В процессе охлаждения в этих сплавах протекают мартенситные превращения в ромбоэдрическую R- и моноклинную В19'-мартенситные фазы, начинающиеся при температурах соответственно T_R и M_s . Харантеристические температуры́ и последовательности превращений при охлаждении приведены в таблице.

Сплав		T_{R} (K)	М ₅ (K)	Последовательность превращений
Ti ₄₈ Ni ₄₈ V ₄	у закаленный 245 225	225	$B2 \rightarrow R \rightarrow R + B19'$	
1 (481 A 148 A 4	состаренный	270	235	$B2 \rightarrow R + B2 \rightarrow R \rightarrow R + B19' \rightarrow B19'$
Ti ₄₆ Ni ₄₆ V ₈	закаленный	235	_	$B2 \rightarrow R'$
	состаренный	255	210	$B2 \rightarrow R + B2 \rightarrow R + B2 + B19' \rightarrow R + B19$

После старения сплава в течение трех лет при комнатной температуре были обнаружены изменения в положении мартенситных точек на температурной шкале; ме-

няются и последовательности превращений при охлаждении и нагреве (см. таблицу). На рисунке приведены фрагменты дифрактограммы в области линии (110) $_{B2}$, снятые при охлаждении естественно состаренного сплава $\mathrm{Ti_{45}Ni_{46}V_8}$ и соответствующие основным стадиям последовательности превращений. В процессе охлаждения линия (110) ва уширяется вследствие ромбоэдрического искажения решетки, связанного с формированием R-мартенсита. При 220 К отчетливо виден дублет R-мартенсита: линии $(300)_R$ и $(112)_R$ (индексы даны в гексагональном базисе [3]) и центральный пик $(110)_{B2}$. Наличие двухфазного состояния B2+R (равновесного или квазиравновесного) в несостаренных сплавах никелида титана с переходными металлами не наблюдается [3], что наряду с повышением точки T_R и реализацией второго превращения в моножлинный мартенсит B19' говорит об изменениях в кристаллической структуре исходной высокотемпературной B2-фазы. Такие изменения, по-видимому, связаны с расслоением B2-фазы на два твердых раствора—B2(1) и B2(2) с той же о.ц.к. структурой, которые различаются составом. Такое расслоение B2-фазы возникает за

различаются составом. Такое расслоение B2-фазы возникает за счет объемной диффузии при естественном старении пересыщенного твердого раствора, полученного в экстремальных условиях


закалки из жидкого состояния.

Следует отметить, что расслоение B2-фазы практически не проявляется на дифрактограммах, снятых при температурах выше T_R (например, в уширении линий B2-фазы в состаренных сплавах по сравнению с закаленными. Тем не менее четко видно, что в процессе охлаждения один из твердых растворов испытывает превращение в R-мартенсит: $B2(1) \rightarrow R$ при T_R , а второй остается стабильным вплоть до температуры M_S , а при дальнейшем понижении температуры превращается в моноклинный мартенсит B19' по схеме $B2(2) \rightarrow B2(2) + B19' \rightarrow B19'$. При этом B2- и R-фазы в состаренном сплаве $T1_4$ в $N1_4$ в V_8 сосуществуют в широком температурном интервале $\Delta T \approx 45$ К.

Вопрос о формировании B19'-мартенсита из R-фазы в сплаве ${\rm Ti}_{46}{\rm Ni}_{46}{\rm V}_8$ остается открытым, так как дифракционные линии R-фазы достаточно интенсивны и при 5 K и неясно, переходит

ли часть R-мартенсита в мартенсит В19'.

Фрагменты дифрактограммы сплава $Ti_{46}Ni_{46}V_{8}$, закаленного из жидкого состояния и состаренного в течение трех лет при комнатной температуре

Анализируя экспериментальные результаты, можно сделать вывод, что мартенситные превращения протекают в неоднородных твердых растворах с расслоением B2-фазы в определенной степени независимо. Поэтому в первом приближении можно сцитать общую картину аддитивной суперпозицией двух последовательностей превращений, протекающих в твердых растворах различного состава — B2(1) и B2(2). При этом фазы, формирующиеся путем бездиффузионных мартенситных превращений из растворов B2(1) и B2(2), также будут отличаться составами, и если мартенситные фазы проиндексировать аналогичным образом, схемы превращений при охлаждении примут вид:

для естественно состаренного сплава Ті48 Nі48 V4

$$B2(1) + B2(2) \rightarrow R(1) + B2(2) \rightarrow R(1) + R(2) \rightarrow R(1) + R(2) + B19'(1) + B19'(2) \rightarrow B19'(1) + B19'(2);$$

для естественно состаренного сплава Ti46Ni46V8

$$B2(1) + B2(2) \rightarrow R(1) + B2(2) \rightarrow R(1) + B2(2) + B19'(2) \rightarrow R(1) + B19'(2)$$
.

Следует подчеркнуть, что не все экспериментальные данные могут быть описаны в рамках аддитивной модели, позволяющей разобраться в последовательностях структурных превращений при охлаждении и нагреве. Например, аномальный температурный гистерезис превращения $B2 \leftrightarrow R$, наблюдаемый в естественно состаренных сплавах системы TiNiV при термоциклировании, относится к неаддитивным явлениям, и, веронно, объясияется релаксацией упругих напряжений на концентрационных неоднородностях расслоившегося B2-твердого раствора. Аномальный температурный гистерезислодробно описан в работе [4].

ЛИТЕРАТУРА

[1] Сплавы с эффектом памяти формы. М., 1990. [2] Илюшин А. С., Кокоев Г. Н., Хунджуа А. Г., Осипов Э. К.//Металлы. 1989. № 5. С. 115. [3] Goo E., Sinclair S.//Acia Metallurg. 1985. 33, N 9. Р. 1717. [4] Хунджуа А. Г., Захарова М. И., Кокоев Г. Н.//Металлофизика. 1988. 10, № 6. С. 14.

Поступила в редакцию 27.10.93