УДК 621.385

ВОЛНЫ ПРОСТРАНСТВЕННОГО ЗАРЯДА В ЧЕРЕНКОВСКИХ. МИКРОВОЛНОВЫХ УСТРОЙСТВАХ

В. М. Пикунов, И. А. Чернявский

Проведено численное исследование свойств волн пространственного заряда микроволнового черенковского устройства. Изучены усиление волн пространственного заряда на частотах, лежащих ниже критической частоты замедляющей системы, и генерация длинноволнового излучения вблизи этой частоты.

Введение

Микроволновые черенковские устройства на основе периодических волноводов и волноводов с частичным диэлектрическим заполнением в настоящее время интенсивно исследуются как теоретически, так и экспериментально. Физические принципы работы подобных устройств основаны на эффекте Черенкова—Вавилова — излучении электромагнитных волн при пролете частиц через среду со скоростью, большей скорости света в последней.

Во многих экспериментальных работах по генерации СВЧ-волн сильноточными электронными пучками (например, в [1]) отмечается, что излучение содержит длинноволновую компоненту, спектр которой лежит вблизи критической частоты замедляющей системы. Природа подобного длинноволнового излучения в настоящее время недостаточно изучена. Ниже рассматривается один из возможных механизмов усиления увлекаемых полей электронного потока на частотах, лежащих ниже критической частоты замедляющей системы, и генерация длинноволнового излучения вблизи этой частоты — длинноволновая черенковская неустойчивость [2].

Как известно, спектр излучения Черенкова—Вавилова в бесдисперсной среде начинается с нулевой частоты и простирается до бесконечно больших частот [3]. Электродинамические системы черенковских устройств, нагруженные электронным пучком, можно рассматривать как среды с временной и пространственной дисперсией, одной из особенностей которых является наличие частотных областей непрозрачности, где невозможно распространение электромагнитных волн. В то же время в этих областях (например, для частот ниже критической частоты замедляющей системы) возможно распространение и, более того, усиление электронных волн, переносящих потоки как электромагнитной, так и кинетической мощности [4, 5].

Для увеличения выходной мощности черенковских устройств используются релятивистские электронные пучки, получаемые с помощью сильноточных электронных ускорителей. Важным релятивистским эффектом является возбуждение вихрсвых полей пространственного заряда [6], которые совместно с потенциальными кулоновскими образуют увлекаемые поля (поля ближней зоны) электронных сгустков, локализованные вблизи них и двигающиеся с их скоростями. Это приводит к тому, что возбуждаемые волны пространственного заряда переносят кроме кинетического потока мощности и поток вихревой электромагнитной мощности. В этом случае становятся неприменимыми формулы для расчета параметров волн пространственного заряда, основанные на учете одних потенциальных увлекаемых полей и приведенные, например, в работе [7]. Указанные выше обстоятельства требуют более тщательного изучения свойств волн пространственного заряда в релятивистских черенковских устройствах. Исследование проводится для частного случая устройства на основе волновода с частичным заполнением диэлектриком, однако полученные выводы справедливы и для других типов микроволновых черенковских устройств.

1. Основные уравнения и предположения

Рассмотрим односекционное черенковское устройство (рис. 1) на основе круглого волновода радиуса r_w , ко внутренней поверхности ко-

Рис. 1. Схема черенковского устройства на основе волновода с частичным диэлектрическим заполнением: 1 — катод, 2 — электронный пучок, 3 — диэлектрическая втулка, 4 — рупор торого плотно прилегает диэлектрическая втулка с внутренним радиусом r_e и длиной l. Диэлектрическая проницаемость втулки является кусочно-непрерывной функцией координат, имеющей действительную и мнимую части:

$$\varepsilon = \varepsilon'(r; \omega) - i\varepsilon''(r; \omega)$$

Заменим катодную и коллекторную области устройства отрезками полубесконечных гладких волноводов радиуса r_{ω} , а вносимые ими отражения электромагнитных волн уч-

тем с помощью коэффициентов трансформации, задаваемых во входном (z=0) и выходном (z=L) сечениях устройства. Рассматриваемая электродинамическая система нагружена кольцевым электронным потоком с наружным r_{be} и внутренним r_{bi} радиусами. Электронный поток фокусируется бесконечно большим продольным магнитным полем, и вследствие этого движение электронов одномерное. Предположим также, что электронный поток возбуждает аксиально симметричные электромагнитные поля E-типа. Ограничимся линейной задачей, когда переменные составляющие a(r) рассматриваемых величин $A=a_0(r) + +a(r)\exp\{i\omega t\}$ много меньше их постоянных составляющих $a_0(r)$.

С учетом сделанных предположений запишем системы уравнений для определения переменных и постоянных во времени величин:

$$rot \mathbf{H} - i\omega \varepsilon_0 \varepsilon \mathbf{E} = \mathbf{J},$$

$$rot \mathbf{E} + i\omega \mu_0 \mathbf{H} = 0,$$

$$\frac{dV}{dz} + i\omega V/V_0 = -\eta \overline{E_z}/(\gamma_0^3 V_0),$$

$$\frac{dJ}{dz} + i\omega \rho = 0,$$

$$\mathbf{J} = (\rho_0 V + \rho V_0) \Psi (r) \mathbf{z}_0,$$

$$rot \mathbf{H}_0 = \mathbf{J}_0,$$

$$div \varepsilon \operatorname{grad} U = -J_0/(\varepsilon_0 V_0),$$

$$V_0/c = \sqrt{U/[mc^2(1 + U/(mc^2))]},$$

$$\mathbf{J}_0 = \rho_0 V_0 \Psi (r) \mathbf{z}_0.$$

Здесь (r, φ , z) — цилиндрическая система координат; E={ E_r , 0, E_z }, H= ={0, H_{φ} , 0} — рассматриваемые компоненты электромагнитных полей; ρ_0 , V_0 , J_0 — постоянные, a ρ , V, J — переменные составляющие плот-

(2)

(1)

ности пространственного заряда, скорости и плотности тока электронного пучка соответственно; $\eta = |e|/m$; e, m — заряд и масса покоя электрона; U — скалярный потенциал; c — скорость света; $\gamma_0 = 1 + U/(mc^2)$ релятивистский фактор Лоренца; черта сверху означает усреднение по сечению электронного пучка; $\Psi(r)$ — заданная функция распределения тока пучка по радиусу.

Первые два уравнения (1) — уравнения Максвелла; третье и четвертое — линеаризованные уравнения одномерного релятивистского движения и непрерывности соответственно; пятое — выражение для линейной части плотности конвекционного тока. Первое уравнение (2) — уравнение Максвелла для определения постоянной составляющей магнитного поля; из второго — уравнения Пуассона — и третьего уравнений можно определить постоянные составляющие скалярного потенциала U и скорости электронного пучка V_0 ; четвертое — выражение для постоянной составляющей плотности конвекционного тока.

Будем искать решения уравнений (1) и (2), удовлетворяющие следующим дополнительным условиям:

1) условиям излучения и возбуждения электронных волн во входном z=0 и выходном z=L сечениях черенковского устройства:

где $(\vec{e}, \vec{\mathcal{H}}, \mathcal{V}, \mathcal{Y})_{\pm m}$ — электромагнитные поля, скорость и плотность тока собственных электронных волн в гладком волноводе, нагруженном электронным пучком, распространяющихся в прямом (+) и обратном (—) направлениях; $\Gamma_{\pm m \mp n}$ — коэффициенты трансформации нормальных электронных волн гладкого волновода на неоднородностях входного и выходного трактов черенковского устройства; $A_{\pm m}$ — заданные амплитуды электронных волн на входе и выходе устройства; $T_{\mp m}$ неизвестные, подлежащие определению амплитуды излученных во входном и выходном сечениях электронных волн; m, n=1, 2, ...;

2) граничным условиям на поверхности разрыва диэлектрика для тангенциальной компоненты электрического поля

$$E_{\tau}|_{r=r_{\varepsilon+0}} = E_{\tau}|_{r=r_{\varepsilon-0}}; \tag{4}$$

3) граничным условиям на металлической поверхности волновода: $E_{\tau}|_{r=r_m} = 0;$ (5)

 условиям равенства скалярного потенциала ускоряющему напряжению на поверхности и его ограниченности на оси волновода:

$$U|_{r=r_0} = U_0, U|_{r=0} \leq \text{const.}$$

47

(6)

(3)

Уравнения (1) и (2) совместно с граничными условиями (3)—(6) отражают самосогласованный процесс взаимодействия электронов и электромагнитных полей в линейном приближении.

2. Электронные волны черенковского устройства

Воспользуемся результатами и обозначениями работ [2, 5, 8] и сведем исходные уравнения и граничные условия к краевой задаче для однородной системы обыкновенных дифференциальных уравнений:

(7)

$$\frac{d\mathbf{W}}{dz} = \widehat{F}\mathbf{W},$$

$$\widehat{D}^{(1)}\mathbf{W}(0) = \mathbf{b}^{(1)},$$

$$\widehat{D}^{(2)}\mathbf{W}(L) = \mathbf{b}^{(2)},$$

$$z \in [0, L].$$

Здесь W — вектор длины 2N+2, содержащий комплексные амплитуды электрического **W**^(e) и магнитного **W**^(h) полей волн замедляющей структуры и переменные составляющие скорости V и конвекционного тока J (транспонированный вектор $W^T = \{ \mathbf{W}^{(e)T}, \mathbf{W}^{(h)T}, V, J \}); \hat{F}$ —квадратная матрица размерности (2N+2), зависящая от продольной координаты z и описывающая взаимодействие линейных волн черенковского устройства: $\widehat{D}^{(1)}$ и $\widehat{D}^{(2)}$ — прямоугольные матрицы граничных условий размерности $(N+2) \times (2N+2)$ и $N \times (2N+2)$ соответственно; $\mathbf{b}^{(1)}$ и $\mathbf{b}^{(2)}$ — векторы длиной N+2 и N соответственно, содержащие заh⁽¹⁾ данные амплитуды полей на входе и выходе устройства; вектор содержит кроме того еще амплитуды скоростной и токовой модуляции во входном сечении устройства; N — число базисных функций в методе Галеркина. Подробное описание матричных элементов и структуры матриц $\hat{F}, \hat{D}^{(1)}$ и $\hat{D}^{(2)}$, векторов $\mathbf{b}^{(1)}$ и $\mathbf{b}^{(2)}$ дано в работах [2, 5, 8]. Рассматриваемая краевая задача для однородной системы обыкновенных дифференциальных уравнений (7) относится к числу жестких задач и для ее решения разработан снециальный численный алгоритм [8].

Постоянные составляющие скорости электронного пучка и скалярного потенциала можно найти с номощью итерационного алгоритма [5].

Замедляющие системы рассматриваемых черенковских устройств содержат достаточно протяженные секции, для которых F = const и имеет смысл задача на собственные электронные волны

$$(\widehat{F} - \lambda_m \widehat{E}) \mathbf{e}_m = 0, \tag{8}$$

где λ_m — собственные значения матрицы \hat{F} , являющиеся нормированными продольными постоянными распространения электронных волн $k_z^{(m)} = \lambda_m \omega_0 / V_0$; \mathbf{e}_m — собственный вектор матрицы \hat{F} ; ω_0 — критическая частота волновода радиуса r_w , m = 1, 2N + 2. Численное решение полной проблемы собственных значений (8) позволяет построить реальную и мнимую части дисперсионной характеристики ($\omega/\omega_0, \lambda_m$). Кроме того, собственный вектор $\mathbf{e}^{(m)}$ определяет структуру электрического $\hat{\boldsymbol{e}}^{(m)}$ и магнитного $\hat{\mathcal{H}}^{(m)}$ полей, величины скоростной $\mathcal{P}^{(m)}$ и токовой д(m) компонент электронной волны в выбранной точке дисперсионной характеристики [5]. Для каждой электронной волны справедлива теорема о потоке кинетической мощности — теорема Чу:

(1/2)
$$\operatorname{Re} \oint [\vec{e}^{(m)} \times \vec{\mathcal{H}}^{(m)^*}] ds = (1/2) \operatorname{Re} \oint V_{\operatorname{kin}}^{(m)} \vec{\mathcal{H}}^{(m)*} ds,$$

где $V_{kin}^{(m)} = \gamma_0^3 V_0 \mathscr{P}^{(m)} / \eta$ — релятивистский кинетический потенциал *m*-й электронной волны.

Введем в рассмотрение потоки кинетической $S_m^{(e)}$ и электромагнитной энергин $S_m^{(EM)}$, переносимые *m*-й электронной волной. Знание потоков электромагнитной и кинетической мощности позволяет ввести следующую классификацию электронных волн [5]: если $|S_m^{(e)}| \gg |S_m^{(EM)}|$, то подобные электронные волны будем называть волнами пространственного заряда; в случае, когда $|S_m^{(e)}| \ll |S_m^{(EM)}|$, волна соответствует волноводной моде; если же $|S_m^{(e)}| \approx |S_m^{(EM)}|$, то такая волна соответствует связанной волне пространственного заряда и волноводной моды (в терминах теории связанных волн [9]). Знак потока кинетической мощности определяет медленную $(S_m^{(e)} < 0)$ и быструю $(S_m^{(e)} > 0)$ волны пространственного заряда. Знак потока электромагнитной мощности определяет прямую $(S_m^{(EM)} > 0)$ и обратную $(S_m^{(EM)} < 0)$ волны замедляющей системы.

Приведенная здесь классификация электронных волн будет использоваться далее при обсуждении численных результатов.

3. Численные исследования волн пространственного заряда

Вначале обсудим свойства волн пространственного заряда в гладком цилиндрическом волноводе радиуса $r_w=2,5$ см, нагруженного кольцевым электронным пучком с $r_{bi}=1,1$ см и $r_{be}=1,3$ см. На частотах ниже критической частоты волновода существуют лишь две распространяющиеся волны — медленная (МВПЗ) и быстрая (БВПЗ) волны пространственного заряда. Наличие электронного пучка в волноводе приводит к некоторому смещению частоты отсечки низшей волноводной моды E_{01} вверх. На частотах выше критической ветви волн пространственного заряда всегда расположены правее ветви распространяющейся волноводной моды E_{01} . Отметим, что электронная нагрузка приводит лишь к деформации ветвей волноводных мод, однако пересечения их между собой и с ветвями волн пространственного заряда отсутствуют при любых энергиях и при токе, меньшем критического для данного волновода.

Для удобства дальнейшего изложения введем в рассмотрение величину $\zeta_m = S_m^{(e)}/S_m^{(EM)}$, определяющую соотношение потока кинетической мощности и потока электромагнитной мощности, переносимых электронной волной с номером *m*. В табл. 1 приведены результаты чис-

гаолица	1	
---------	---	--

	<i>ё</i> = 50 кэВ		<i>ё</i> == 650 к эВ			& = 2,0 МэВ			
ω/ω ₀	ΜΒΠ3 ζι	БВПЗ ζ 2	$E_{01} \\ 1/\zeta_3$	мвпз с1	БВПЗ ζ2	$E_{01} \\ 1/\zeta_3$	МВПЗ 51	БВПЗ ζ2	E_{01} $1/\zeta_3$
0,6 1,8 3,0 4,2	$-12 \\ -25 \\ -42 \\ -62$	7 21 34 51	450 3 200 12 000	$-5 \\ -10 \\ -15 \\ -19$	3 4 8 11	13 17 55	$ \begin{array}{c} -3 \\ -4 \\ -6 \\ -7,5 \end{array} $	1,2 1,3 1,5 1,8	7 4,2 4,1

З ВМУ, № 4, физика, астрономия

49

ленного расчета величины ζ_m для медленной (m=1) и быстрой (m=2) воли пространственного заряда и величины 1/5m для низшей волноводной моды (m=3). Из таблицы видно, что при увеличении скорости электронов поток электромагнитной энергии вихревого поля, переносимый волнами пространственного заряда, и поток кинетической энергии, переносимый волноводной модой, увеличиваются. Таким образом, при увеличении кинетической энергии электронного потока (&) стираются резкие различия между волнами пространственного заряда и волноводными модами и необходимо использовать представления об электронных волнах. Этот вывод подтверждает и исследование структуры. электромагнитных полей волн пространственного заряда. Если при нерелятивистских энергиях электромагнитное поле волн пространственного заряда является потенциальным и локализовано вблизи электронного потока (штриховые кривые на рис. 2), то при увеличении энергии электронов содержание вихревой компоненты возрастает, поле расплывается по радиусу, становясь объемным и похожим на поле низшей волноводной моды (сплошные кривые на рис. 2).

Рис. 2. Поперечное распределение нормированной продольной компоненты электрического поля для БВПЗ (a), МВПЗ (б) и моды E_{01} (b) в гладком волноводе, нагруженном электронным пучком (штриховая кривая соответствует $\mathcal{E} = 30$ кэВ, сплошная — 150 кэВ)

Рассмотрим односекционное черенковское устройство на основе круглого волновода того же радиуса r_w с частичным диэлектрическим заполнением, имеющего внутренний радиус втулки $r_z=1,5$ см, $\varepsilon'=3,67$ ($\varepsilon''=0$), длину l=120 см. Параметры электронного пучка: постоянная составляющая тока $I_0=0,5 \div 6,5$ кА, $\mathscr{E}=50 \div 650$ кэВ.

Граница черенковской неустойчивости по энергии для бесконечной диэлектрической среды может быть оценена по формуле $\mathscr{E}=511\times$ $\times[(1-1/\epsilon')^{-4}-1]$ кэВ и составляет $\mathscr{E}\simeq88$ кэВ. При энергии пучка, большей этой, возможно возникновение черенковской неустойчивости. Однако из-за наличия зазора между пучком и поверхностью диэлектрической втулки (что типично для реальной геометрии устройства) область неустойчивости для низшей волноводной моды смещена далеко в высокие частоты, которым соответствует много распространяющихся мод. Наблюдается зависимость частотной границы черенковской неустойчивости от энергии пучка. С ростом энергии область неустойчивости чивости сдвигается вниз по частоте. Так, при энергии $\mathscr{E}=110$ кэВ низшая зона неустойчивости располагается в диапазоне частот $\omega/\omega_0 \simeq 23,40 \div 3,90$, где распространяются четыре волноводные моды.

На рис. 3, а приведена дисперсионная характеристика (ДХ) для случая $\mathscr{E}=170$ кэВ ($I_0=1,0$ кА). Низшая область неустойчивости опускается здесь до частоты $\omega/\omega_0 \simeq 1,10$, лежащей пока еще выше критической, и простирается до $\omega/\omega_0 \simeq 2,2$. В этом диапазоне частот распространяются две низшие волноводные моды. В табл. 2 приведена величина ζ_m на различных частотах для трех ветвей данной ДХ. На запредельных частотах волна ветви 2 обладает свойством волноводной моды

Рис. 3. Действительная и мнимая части дисперсионных характеристик черенковского устройства при кинетической энергии электронов: $\mathcal{E} = 170$ (*a*) и 650 кэВ (*б*)

Табл	И	ш	а	- 2
------	---	---	---	-----

<i>ё</i> — 170 кэВ								
ω/ ω ι	ζ1	ξ2	ζ					
0,2 0,6 0,7 0,9 1,0 1,1 1,3 1,7 2,0 2,5	$\begin{array}{c} -2,19\\ -2,16\\ -2,10\\ -1,85\\ -1,60\\ -0,99\\ -0,99\\ -0,98\\ -0,97\\ -6,7\end{array}$	$\begin{array}{c} 0,4\\ 0,08\\ -0,03\\ -0,33\\ -0,55\\ -0,99\\ -0,99\\ -0,98\\ -0,97\\ -0,06\end{array}$	0,5 0,7 0,75 2,6 5,2 5,5 4,8					

	<i>8</i> = 650 кэВ							
ω/ω₀	ζ1	52	ζ.					
0,2 0,5 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2	$\begin{array}{c} -0,99\\ -0,99\\ -0,99\\ -0,99\\ -0,99\\ -0,99\\ -4,0\\ -7,1\\ -6,6\\ -5,1\\ -3,1\\ \end{array}$	$\begin{array}{c} -0,99\\ -0,99\\ -0,99\\ -0,99\\ -0,99\\ -0,99\\ -0,16\\ -0,03\\ -0,01\\ -0,004\\ -0,002\\ \end{array}$	1,8 3,0 6,8 7,6 6,0 3,9 2,2 0,6					

3*

 $(\zeta_2 \ll 1)$, а при $\omega/\omega_0 \simeq 0,7$ величина ζ_2 меняет знак, что говорит о связи этой волны с МВПЗ. Сближение ветвей 1 и 2 в диапазоне частот $\omega/\omega_0 \simeq 0,8 \div 1,10$ сопровождается стремлением $\zeta_{1,2} \rightarrow -1$. Ветвь 3 в этом же диапазоне частот имеет свойства волноводной моды ($\zeta_2 \ll 1$).

Дальнейшее увеличение энергии пучка приводит к тому, что частота начала низшей области неустойчивости становится ниже, чем частота отсечки волновода (вплоть до нуля). На рис. 3, б показана ДХ для случая \mathcal{B} =650 кэВ (i_0 =6,5 кА), а в табл. 2— величины ζ_m для трех ветвей этой ДХ. На запредельных частотах имеются две волны с комплексно-сопряженными волновыми числами. Действительные части ветвей 1 и 2 на ДХ слиты в одну кривую, а мнимые части соответствуют нарастающей и затухающей волнам. Наличие области длинноволновой неустойчивости отражает взаимодействие воли пространственного заряда.

При появлении длинноволновой неустойчивости мнимые части ветвей на ДХ вытягиваются в сторону низких частот. На рис. 3, б сильная вытянутость имеется у низшей области неустойчивости и более слабая — у второй. С дальнейшим ростом энергии пучка такая особенность появляется и у более высоких мод. Однако особый интерес представляет исследование низшей зоны неустойчивости, где нет распространяющихся волноводных мод

Изучим изменение свойств электронных волн в зависимости от энергии пучка на фиксированной частоте $\omega/\omega_0=0,50$, лежащей ниже

<i>ё</i> , кэВ	ξ1	Ę2	λ, см
$\begin{array}{c} 30 \\ 50 \\ 70 \\ 100 \\ 125 \\ 150 \\ 175 \\ 176 \\ 177 \\ 185 \\ 195 \\ 197 \\ 400 \\ 650 \\ \end{array}$	$ \begin{array}{c} -5,5 \\ -4,6 \\ -4,4 \\ -3,2 \\ -2,5 \\ -2,0 \\ -2,0 \\ -2,0 \\ -1,8 \\ -1,3 \\ -1,0 \\ -1,0 \\ -1,0 \end{array} $	2,61,91,71,00,90,60,30,01 $-0,01-0,2-0,7-1,0-1,0-1,0$	$ \begin{array}{c}\\ 14,6\\ 15,3\\\\ 37,5\\ 52,9\\\\ 56,4\\ 77,7\\ 229,3\\ \infty\\ \infty\\ \infty \end{array} $

Т	а	б	л	И	Ц	а	3	
---	---	---	---	---	---	---	---	--

критической частоты диэлектрической замедляющей системы. На этой частоте существуют лишь две ветви распространяющихся электронных волн. Величины отношения ζ_m для этих волн при разной энергии электроновприведены в табл. 3. На рис. 4показано изменение в поперечной структуре *z*-компоненты электрического поля с увеличением энергии пучка. При энергиях 🗞 ≤ ≪30÷50кэВ в устройстве существуют быстрая $(m \neq 2)$ и медленная (m=1) волны пространственного заряда (|ζ_{1,2} |≫1), имеющие структуру поперечную поля. случаем гладкого сходную со (см. рис. 2). волновода При &≥70 кэВ ветвы 2пересе-

кает линию скорости света в диэлектрике и поле, соответствующее ей, проникает в диэлектрик (кривые 1 на рис. 4). При $\mathscr{E} \simeq 100$ кэВ поток вихревого электромагнитного поля, переносимого волной ветви 2, равен, а при $\mathscr{E} \simeq 125$ кэВ превышает поток кинетической мощности. У этой волны начинают преобладать свойства волны замедляющей системы (рис. 4, кривые 2). При $\mathscr{E} \simeq 150$ кэВ ветвь 1 также пересекает линию скорости света в диэлектрике и поле ее волны проникает в него (рис. 4, кривые 3). Ветви 1 и 2 при дальнейшем росте энергии Сближаются. При $\mathscr{E} \simeq 177$ кэВ ветвь 2 пересекает линию $\omega = k_z V_0$, а величина ζ_2 для нее меняет знак — появляется связь с МВПЗ. При достижении порогачеренковской неустойчивости для данной частоты ($\mathscr{E} = 197$ кэВ) ветви 1 и 2 сливаются, проходя ниже линии $\omega = k_z V_0$, и отношение потоков

Рис. 4. Поперечное распределение нормированной продольной компоненты электрического поля для первой (слева) и второй (справа) ветвей электронных волн в черенковском устройстве при различных энергиях пучка на фиксированной часто-те ω/ω₀=0,5; &=70 (1), 125 (2), 150 (3), 197 (4) и 650 кэВ (5)

Рис. 5. Распределения нормированных величин потоков электромагнитной S(EM) и кинетической S^(e) мощностей и переменной составляющей тока Ј электронного пучка вдоль черенковского устройства на частоте ω/ω₀=0,5 при энергии электронов; &=150 (а) и 210 кэВ (б)

мощности |ζ_{1,2}| волн становится величиной порядка единицы. Постоянные распространения становятся комплексными, а поперечная структура полей обеих волн — одинаковой (рис. 4, кривые 4). Отметим, что обе рассматриваемые ветви относятся к волнам, бегущим в прямом направлении. При дальнейшем возрастании энергии потока поперечная

ной с низшей волноводной модой (рис. 4, кривые 5). Наличие комплексных корней может приводить к усилению электронных волн в черенковском устройстве на частотах ниже критической частоты замедляющей системы. Для подтверждения вывода о возможности усиления электромагнитного излучения в этом случае численно решалась краевая задача (7), когда на входе устройства задавались обе распространяющиеся электронные волны с равными амплитудами.

структура поля взаимодействующих волн становится все более сход-

При энергиях электронного пучка ниже порога черенковской неустойчивости вдоль устройства наблюдался колебательно-волновой процесс. Картина продольного распределения потоков S^(EM) и S^(e), а также переменной составляющей тока J для энергии электронов &= = 150 кэВ и тока пучка $I_0 = 1,0$ кА приведена на рис. 5, а. В последней колонке табл. З приведены длины волн плазменных колебаний λ при различной энергии электронов. С ростом энергии λ растет и может превысить длину устройства.

При энергии электронов, превышающей порог черенковской неустойчивости, процессы вдоль устройства носят экспоненциально нарастающий (затухающий) характер. Картина продольного распределения различных величин для случая $\mathcal{E}=210$ кэВ, $I_0=1,4$ кА приведена на рис. 5, б. Наблюдается нарастание увлекаемых полей электронного потока вдоль устройства за счет уменьшения кинетической энергии лучка.

Таким образом, эффект длинноволновой черенковской неустойчивости приводит к усилению электронных волн. Коэффициент усиления для рассматриваемого устройства составляет 10÷30 дБ, что может быть использовано при создании новых типов микроволновых устройств, основанных на преобразовании вихревых неизлучаемых полей электронного потока в электромагнитные излучаемые поля.

Подобное явление усиления возможно и в других частотных областях длинноволновой черенковской неустойчивости, лежащих выше критической частоты замедляющей системы. В отличие от запредельных частот, где нет обратных распространяющихся волн, в этих областях возможны возникновение обратной связи и генерация длинноволнового излучения. Это может служить одним из объяснений появления широкополосной длинноволновой составляющей в спектре излучения экспериментальных устройств.

ЛИТЕРАТУРА

[1] Бугаев С. И., Дейчули М. П., Канавец В. И. и др.//Радиотехн. н электроника. 1987. 32, № 11. С. 2386. [2] Пикунов В. М., Колесникова И. Ю.//Радиотехн. и электроника. 1988. 33, № 11. С. 2381. [3] Тамм И. Е., Франк И. М.//ДАН СССР. 1937. № 14. С. 107. [4] Вайнштейн Л. А.//ЖТФ. 1956. 26, № 1. С. 126. [5] Пикунов В. М., Чернявский И. А.//Радиотехн. и электроника. 1992. 37, № 11. С. 2032. [6] Пикунов В. М., Родякин В. Е., Сандалов А. Н.//Физика и применение микроволн. Ч. 2: Тр. Всесоюз. школы-семинара. 22--27 мая 1991. С. 177. [7] Вгапсh G. М., Міhгап Т. G.//IRE Trans. 1955. ЕD-2. Р. З. [8] Пикунов В. М., Чернявский И. А.//Радиотехн. и электроника. 1992. 37, № 11. С. 2041. [9] Люиселл У.//Связанные и параметрические колебания в электронике М., 1963.

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1994. Т. 35, № 4

УДК 517.984

СВОИСТВА СПЕКТРА СОБСТВЕННЫХ КОЛЕБАНИЙ ОДНОГО КЛАССА ОТКРЫТЫХ ЦИЛИНДРИЧЕСКИХ РЕЗОНАТОРОВ

В. В. Ложечко, Ю. В. Шестопалов

Рассматриваются свойства спектра собственных колебаний открытых цилиндрических резонаторов, поперечное сечение которых образовано полуплоскостью с конечной нерегулярностью границы, допускающей корректную постановку на бесконечности парциальных условий Райхардта—Свешникова. Задача в обобщенной постановке сводится к анализу фредгольмовой оператор-функции частотного спектрального параметра, заданной на римановой поверхности аналитического продолжения фундаментального решения. Доказываются дискретность спектра, отсутствие конечных предельных точек. Выделяются области отсутствия точек спектра.

Опишем класс Π_{ab}^{∞} исследуемых неограниченных двумерных областей Ω , образующих поперечное сечение исследуемого семейства резонаторов, в которых допустима постановка краевых задач для уравнения Гельмгольца с обобщенными парциальными условиями на бесконечности типа Райхардта—Свешникова [1, 2]. Ранее, начиная с работ