УДК 539.12.17

ИОНИЗАЦИОННЫЕ ПОТЕРИ УЛЬТРАРЕЛЯТИВИСТСКИХ БАРИОНОВ, РАССЧИТАННЫЕ С УЧЕТОМ КВАНТОВОЙ ХРОМОДИНАМИКИ

Б. И. Горячев, Д. В. Энговатов (НИИЯФ)

Рассчитаны полные ионизационные потери в и коэффициенты торможения В как функции лоренц-фактора γ для ультрарелятивистских барионов октета $J^{p} = (1/2)^{+}$. Электромагнитные формфакторы барионов берутся на основе КХД-расчетов. Анализируется зависимость $\varepsilon(\gamma)$ и асимптотические уровни є для различных барионов. Обсуждается идея эксперимента для определения зарядовых радиусов гиперонов.

Освоение экспериментальной физикой адронов нового диапазона сверхвысоких энергий (лоренц-факторы адронов $\gamma > 10^3$) и создание адронных пучков на ускорителях стимулируют изучение взаимодействия ультрарелятивистских барионов с веществом. В [1] рассчитаны, в частности, полные средние ионизационные потери є мезонов и барионов сверхвысоких энергий. Зарядовые радиусы гиперонов r_0^{*} , бравшиеся как параметры расчета из некоторых кварковых моделей адронов, определены в [1], по-видимому, недостаточно точно. Ниже приводятся результаты расчетов є, в которых электромагнитная структура барионов учитывается на основе квантовой хромодинамики (КХД).

Полные средние ионизационные потери адронов могут быть вычислены по формуле

$$\varepsilon = \frac{\overline{dE_{\text{ion}}}}{dx} \quad (M \ni B \cdot cM^2 \cdot r^{-1}) = 0,307 \ \beta^{-2} \ Z_h^2 Z_t A_t^{-1} B \ (\gamma, \ Z_t), \tag{1}$$

где β — скорость налетающего адрона (в единицах скорости света), Z_h — его заряд, а Z_t и A_t — соответственно атомный номер и массовое число ядер среды. Безразмерный коэффициент торможения B зависит ог характеристик как среды, так и налетающего адрона. Он может рассматриваться как сумма

$$B = B_d + B_s, \tag{2}$$

где B_d характеризует вклад дальних, а B_s — близких столкновений. Результаты расчета, проведенного аналогично [1], представлены в табл. 1. Коэффициенты торможения B_d рассчитывались по модифицированной формуле Бете—Блоха с учетом ряда поправок [1]. Изучая зависимость $B(\gamma)$, принципиально важно учитывать поправку на эффект плотности, приводящую для конденсированных сред к насыщению функции $B_d(\gamma)$ при $\gamma \gg 1$. В случае близких соударений коэффициент торможения B_s не зависит от характеристик среды и является функцией поперечного сечения упругого рассеяния адрона на электроне, зависящего от квадрата электрического формфактора адрона G_E [2]. Магнитный формфактор G_M выражается через G_E с помощью скейлингового соотношения $G_M = \mu G_E$, где μ — магнитный момент адрона.

Использованные в расчете зависимости G_E от квадрата переданного 4-импульса q даны в табл. 2. Расчет проводился для заряженных

^{*)} Далее в формулах r_q следует рассматривать как безразмерный параметр, численно совпадающий со среднеквадратичным зарядовым радиусом адрона, выраженным в Фм.

Таблица I

	Лорени-фактор у							
Барион	10	3,16-101	102	3,16·10 ²	108	3,16 103	104	
$p \xrightarrow{B_s}{\epsilon}$	0,696 11,56 1,727	1,791 12,73 1,791	2,904 13,84 2,048	3,950 14,89 2,202	$4,648 \\ 15,59 \\ 2,306$	4,832 15,77 2,333	4,876 15,82 2,339	
Βs Σ+ Β ε	0,697 11,57 1,728	1,794 12,74 1,883	$\left \begin{array}{c}2,913\\13,86\\2,049\end{array}\right $	3,979 14,921 2,207	4,796 15,74 2,328	5,040 15,98 2,364	5,091 16,03 2,371	
Σ^{-} B_{s}	0,697 11,57 1,728	1,794 12,74 1,883	2,909 13,85 2,049	3,954 14,90 2,203	4,738 15,68 2,319	5,043 15,98 2,364	5,109 16,05 2,374	
$egin{array}{c} & B_s \ & B \ & B \ & \varepsilon \end{array}$	0,698 11,57 1,728	1,795 12,74 1,88 4	2,911 13,85 2,049	3,950 14,89 2,203	4,698 15,64 2,313	4,961 15,90 2,352	$5,015 \\ 15,96 \\ 2,360$	

Примечание. Значения B_s приведены для $\Omega_{\min} = 10$; значения є даны в МэВ·см²·г⁻¹ для алюминия.

Таблица 2

Барион	Электрический формфактор G _E	ro	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- M
p	$0,73665e^{-3,1q^2} + 0,235e^{-0,772q^2} + + 0,0267e^{-0,22q^2} + 0,00165e^{-0,052q^2}$	0,76		0,33
Σ^+	$0,8e^{-1,55q^2} + 0,23e^{-q^4} - 0,03$	0,54	0,57	0,27
Σ-	$e^{-0,98q^2+0,04q^4}$	0,48	0,49	0,31
Ξ-	$e^{-1,12q^2+0,035q^4}$	0,51	0,52	0,31

Примечание. Символами \tilde{r}_0 и \tilde{M} обозначены соответственно зарядовый раднус r_{ϕ} (в Фм) и модельный фактор M, рассчитанные с помощью параметризационных формул (4) и (5).

барионов октета $J^{p} = (1/2)^{+}$. Приведенные параметризации $G_{E}(q^{2})$ получены в [3]. В табл. 2 даны также значения зарядовых радиусов r_{0} , рассчитанные по этим параметризациям.

В случае протона параметризация хорошо воспроизводит как экспериментальные данные [4], так и результаты КХД-расчетов, выпслненных в рамках теории возмущений [5]. Для гиперонов экспериментальные данные отсутствуют и параметризации отражают результаты КХД-расчетов на решетке [6]. В [3] электрический формфактор G_E трактуется как фурье-образ функции плотности распределения электрического заряда в адроне, что приводит к ограничению области применимости параметризации $q^2 \ll 4$ (ГэВ/с)² и $\gamma \ll 10^4$. При расчете B_s нижней границей передаваемой электронам энергии*) Q была величина $Q_{\min}=10$.

*) Q выражается в единицах удвоенной энергии покоя электрона.

Как видно из табл. 1, коэффициенты торможения B_s , B и полные ионизационные потери є при $\gamma \gg 10^3$ выходят на плато, стремясь к асимптотическим значениям. Наряду с отме-

птотическим значениям. Наряду с отмеченным ранее насыщением функции $B_d(\gamma)$ происходит также насыщение и $B_s(\gamma)$, что определяется действием электромагнитных формфакторов адронов [1, 7].

Максимальное отличие значений є наблюдается в асимптотической области и не превышает для барионов $\sim 1.5\%$, а для гиперонов ~0,5%. Различие в ходе функции $\varepsilon(y)$ хорошо видно на рисунке. При у≪10³ оно определяется в основном разностью масс и магнитных моментов барионов µ, а при у≫10³ — зарядовым радиусом ro и µ. Минимальные асимптотические ионизационные потери наблюдаются для протона, который имеет максимальную среди барионов октета величину µ и максимальный r₀. Поскольку действие r_0 и μ на є противоположно (с ростом r₀ тормозная способность уменьэто шается), обстоятельство демон-

Относительные отличия полных средних иопизационных потерь для p(1), $\Xi^{-}(2)$, $\Sigma^{+}(3)$, $\Sigma^{-}(4)$ от ионизационных потерь протона, рассчитанных с помощью дипольной формулы

стрирует определяющее влияние зарядовых радиусов адронов на их асимптотические значения *B*. На рисунке по оси ординат изображена величина ($\varepsilon_b - \widetilde{\epsilon_p}$)/ $\widetilde{\epsilon_p}$, где ε_b — полные ионизационные потери бариона, а $\widetilde{\epsilon_p}$ — аналогичная величина для протона, электрический формфактор которого описывается известной дипольной формулой (см., напр., [8])

$$G_E(q^2) = [1 + q^2 (\Gamma \ni B/c)^2/0, 71]^{-2},$$

существенно завышающей значения G_E по сравнению с параметризацией [3] при $q^2 > 10$ (ГэВ/с)². Как видно из рисунка, столь большие передаваемые импульсы весьма слабо влияют на ε (отличие не превышает $\sim 0.1\%$).

Следуя [1], можно написать параметризационную формулу

$$M_{b} = M_{p} + 0.962 \left(B_{a}^{b} - B_{a}^{p}\right) + 0.962 \ln\left(r_{0}^{b}/r_{0}^{p}\right) - 3.05 \cdot 10^{-2} \left(\mu_{b}^{2} - \mu_{p}^{2}\right), \qquad (4)$$

которая связывает асимптотические коэффициенты торможения B_{α} для некоторой фиксированной среды с r_0 , μ и M — модельным фактором, характеризующим компактность распределения электрического заряда в адроне [9] (индексы «p» и «b» относятся соответственно к протону. и произвольному бариону).

Представляет интерес проанализировать, насколько применима концепция модельного фактора в случае параметризаций [3], не связанных с простыми «геометрическими» моделями электромагнитных формфакторов. В табл. 2 приведены модельные факторы барионов, полученные по формуле (4), причем коэффициент B_{a^p} рассчитывался с помощью дипольной формулы (3), что отвечает $M_p=0.38$ [9] и $r_{0^p}=0.8$. Среднее значение модельного фактора составляет 0,302 при относительной флуктуации ~10%. Рассчитанные таким образом значения Mблизки к модельному фактору, отвечающему гауссовому распределению плотности электрического заряда (M=0.31). Можно предположить, что модельные факторы адронов, являющихся членами одного супер-

(3)

мультиплета J^p , должны быть близки. Если считать их одинаковыми для рассматриваемого октета барионов $J^p = (1/2)^+$, то, согласно (4), получаем

$$r_0^b = r_0^p \exp\left[-(B_a^b - B_a^p) + 3,17 \cdot 10^{-2} (\mu_b^2 - \mu_p^2)\right].$$
(5)

Зарядовые радиусы, рассчитанные по формуле (5), представлены в табл. 2. Видно, что они весьма близки (с точностью ~4%) к «правильным» значениям r_0 . Это обстоятельство может быть важным при планировании экспериментов для определения зарядовых радиусов гиперонов с помощью хорошо известного зарядового радиуса r_0 протона. Эксперименты могут быть проведены по схеме, обсужденной в [9]. В этой работе предложено анализировать треки жестких δ-электронов, образованных ультрарелятивистскими адронами в жидководородной пузырьковой камере. В [9] показано, что изучение энергетического спектра таких электронов позволяет получить надежную оценку B_s , B и ε . В области сверхвысоких энергий ($\gamma \gg 10^3$), когда ($B^b - B^p$) стремится к ($B_a^b - B_a^p$), с помощью формулы (5) может быть определен зарядовый радиус любых барионов (в том числе и нестабильных барионов гиперонов), если по ходу эксперимента чередуется «облучение» камеры пучками этих барионов и протонными пучками.

ЛИТЕРАТУРА

[1] Горячев Б. И., Линькова Н. В.//Ядерная физика. 1993. 56. С. 195. [2] Тигпет J. et al.//Phys. Rev. 1973. B8. Р. 4053. [3] Saleem M. et al.//Phys. Rev. Lett. 1986. 57. Р. 2633. [4] Агпоld R. J. et al.//Ibid. Р. 174. [5] Lepage G. P., Brodsky S. J.//Phys. Lett. 1979. B87. Р. 359. [6] Samuel S., Moriarty K. J. M. Preprint CERN-TH-4396/86. 1986. [7] Горячев Б. И., Линькова Н. В.//Ядерная физика. 1989. 49. С. 1046. [8] Перкинс Д. Введение в физику высоких энергий. М., 1975. [9] Горячев Б. И., Линькова Н. В.//Ядерная физика. 1991. 54. С. 1663.

Поступила в редакцию 11.02.94

БЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1994. Т. 35, № 5

РАДИОФИЗИКА

УДК 535.4:621.396:677.71:001.24

ФИЗИЧЕСКИЕ ОСНОВЫ МИЛЛИМЕТРОВОЙ И СУБМИЛЛИМЕТРОВОЙ ТЕХНИКИ

ЧАСТЬ 2. ДИФРАКЦИОННЫЕ РЕШЕТКИ. ГЕНЕРАТОРЫ ДИФРАКЦИОН-Ного излучения

В. П. Шестопалов *)

Подводятся итоги теоретических и экспериментальных исследований дифракционных решеток, элементов открытых волноводных систем и генераторов дифракционного излучения. Приводятся электродинамические характеристики базовых устройств и приборов, созданных на их основе.

§ 1. Дифракционные решетки

Современная теория дифракционных решеток (ДР), обобщенная в [1], посвящена изучению спектров решеток как открытых периодиче-

^{*)} Институт радиофизики и электроники АН Украины, г. Харьков.