ТЕОРЕТИЧЕСКАЯ И МАТЕМАТИЧЕСКАЯ ФИЗИКА

УДК 621.372.823:621.315.61

РАСЧЕТ ВОЛОКОННЫХ СВЕТОВОДОВ С ПОМОЩЬЮ АЛГОРИТМА Саморегулирующейся сетки

А. Н. Боголюбов, А. В. Красильникова

(кафедра математики)

Предложен алгоритм расчета открытых волноведущих систем и приведены примеры его использования для световодов со сложной формой профиля показателя преломления.

При рассмотрении задач о распространяющихся модах в открытых волноведущих системах большую сложность вызывает адекватная аппроксимация граничных условий. Способ решения проблемы аппроксимации уравнений в особой точке r=0 оператора Лапласа в цилиндрической системе координат предложен в работе [1]. С другой стороны, постановка граничных условий на бесконечности остается одной из основных проблем при решении задач такого типа. Для градиентных волокон в работе [2] предложен метод постановки эффективных граничных условий. Однако при произвольной азимутальной зависимости функции диэлектрической проницаемости материала волокна $\varepsilon = \varepsilon (r, \varphi)$ постановка таких эффективных граничных условий существенно усложняется. Необходим поиск других путей решения проблемы. Одним из способов аппроксимации граничных условий на бесконечности является использование бесконечных элементов [3].

Использование метода конечных элементов с обычными внутренними базисными функциями приводит к системе алгебраических уравнений вида

$$\sum_{ij} A_{ij}^{i'j'} (\beta^2) X^{ij} = 0,$$

представляющей собой обобщенную алгебраическую проблему собственных значений относительно квадрата постоянной распространения β и собственных векторов — полей распространяющихся волн. Структура матрицы A является блочно-ленточной, причем параметр β^2 входит только в диагональные элементы матрицы.

Одной из сложностей использования эффективных граничных условий, в частности введения бесконечных элементов, является нелинейное вхождение параметра β^2 в матрицу системы уравнений. Ниже предлагается способ такого выбора базисных функций на бесконечных элементах, при котором алгебраическая проблема собственных значений становится линейной.

Рассмотрим цилиндрическую сетку с узлами *r_i* и *φ_i* и определим базисные функции на бесконечных элементах следующим образом:

 $N_{ij}^{\infty} = R_i(r) \Phi_j(\varphi),$

причем

$$N_{ij}^{\infty}(r_{i'}, \varphi_{j'}) = \delta_{ij}^{i'j'} = \begin{cases} 1 \text{ при } (i, j) = (i', j'), \\ 0 \text{ при } (i, j) \neq (i', j'). \end{cases}$$

3

Функция $\Phi_i(\varphi)$ выбирается обычным образом [1]. При выборе радиальных базисных функций будем руководствоваться физической стороной вопроса. Электромагнитные поля в однородной бесконечной оболочке имеют вид

$$u(r, \varphi) = \sum_{n=0}^{\infty} a_n K_n \left(\sqrt{\beta^2 - k_0^2 \varepsilon_{cl}} r \right) e^{in\varphi},$$

где $u(r, \varphi)$ — любая из компонент электромагнитного поля, a_n — неизвестные коэффициенты, ε_{cl} — диэлектрическая проницаемость оболочки волокна, K_n — функция Макдональда порядка n, $k_0 = \omega/c$ волновое число.

На некотором расстоянии R от оси волновода, определяемом из условия $\sqrt{\beta^2 - k_0^2 \epsilon_{cl} R} \gg 1$, справедливо асимптотическое представление для функции Макдональда

$$K_n\left(\sqrt{\beta^2-k_0^2\epsilon_{cl}}r\right)\simeq \frac{1}{\sqrt{r}}\exp\left(\frac{1}{\sqrt{\beta^2-k_0^2\epsilon_{cl}}}r\right)$$

при r>R. Тогда поведение поля при r>R характеризуется функцией

$$u(r, \varphi) \simeq \sigma \frac{1}{\sqrt{r}} \exp\left(-\sqrt{\beta^2 - k_0^2 \varepsilon_{cl}} r\right),$$

где σ — не зависящий от r коэффициент. Отсюда вытекает, что радиальную базисную функцию на бесконечности удобно выбрать следующим образом:

$$R_{i}(r) = \sqrt{\frac{R}{r}} \exp\left(-\sqrt{\beta^{2} - k_{0}^{2}\epsilon_{cl}}(r - R)\right).$$

При таком выборе базисной функции параметр β^2 входит в матрицу системы линейно, так как вклады бесконечных элементов не зависят от β^2 , а зависят от параметра $\varkappa = \sqrt{\beta^2 - k_0^2 \varepsilon_{cl} R}$, на который накладывается единственное условие: $\varkappa \gg 1$.

Выбор параметра \varkappa обусловливает количество дополнительных слоев k_{add} цилиндрической сетки, которое необходимо ввести, чтобы последний слой соответствовал R. Оптимальный выбор слоев осуществляется автоматически с помощью алгоритма саморегулирующейся сетки.

При программной реализации этого метода саморегуляция сетки происходит при каждом шаге итераций по β^2 : задав начальное приближение $b^{(0)}\left(\operatorname{где} b = \frac{\beta^2/k_0^2 - \varepsilon_{cl}}{\varepsilon_{max} - \varepsilon_{cl}}\right)$. получаем $k_{add}^{(0)}$ при заданном $\varkappa \gg 1$; решив задачу на собственное значение, получим новое приближение $b^{(1)}$ для b и т. д. Процесс сходится быстро: при использовании метода обратных итераций собственное значение b вычисляется с точностью до 5-го знака за 2—3 итерации, а вблизи отсечки — за 5—6 итераций.

Учет граничных условий с помощью бесконечных элементов и алгоритма саморегулирующейся сетки позволяет проводить расчеты вплоть до частоты отсечки. В таблице сопоставляются результаты расчетов двухслойного волокна при различной аппроксимации условий на бесконечности. Полученные решения сравнивались с точным решением. При расчете с саморегулирующейся сеткой параметр ж выбирался равным 10. На рис. 1 приведены дисперсионные кривые системы двух волокон с параболическим профилем показателя преломления, касаю-

v	Точное решение	Виртуальная стенка	Параметрические конечные элементы	Саморегулирующаяся сетка
1,5	0,229249	0,228878	0,228878	0,228878
1,4	0,187678	0,187368	0,187368	0,187368
1,3	0,146366	0,146104	0,146104	0,146104
1,2	0,106788	0,106468	0,106478	0,106601
1,1	0,070871	0,070014	0,070056	0,070753
1,0	0,040952	0,037713	0,037847	0,040883
0,9	0,019159	0,008899	0,009219	0,019076
0,8	0,006407	-0,019037	0,018140	0,006316
0,7	0,001225	—0,050310	0,049243	0,001164
0,6	0,000086	0,091347	-0,089610	0,000032

щихся по образующей, которые рассчитаны при учете условий на бесконечности методом виртуальной стенки (сплошная кривая) и с помощью алгоритма саморегулирующейся сетки (штриховая). Здесь $b = (\beta^2/k_0^2 - \varepsilon_{cl})/(\varepsilon_{max} - \varepsilon_{cl})$ нормированная постоянная распространения, $V = ka\sqrt{\varepsilon_{max} - \varepsilon_{cl}}$ нормированная частота. Из таблицы и рис. 1

видно, что вдали от отсечки дисперсионные кривые совпадают, в то время как вблизи отсечки естественное поведение дисперсионных кривых наблюдается лишь при расчете с помощью алгоритма саморегулирующейся сетки. Заметим, что в работе [1] для учета условий на бесконечности использовались бесконечные элементы, в которых показатель экспоненты задавался параметром задачи (приведенные в таблице расчеты по этому методу проводились при параметре L= =10). Представленный в настоящей работе алгоритм вда-

Рис. 1. Дисперсионные кривые системы двух волокон с параболическим профилем показателя преломления, касающихся по образующей

ли от отсечки более эффективен по времени счета и вблизи отсечки более точен по сравнению с алгоритмом работы [1]. В качестве примеров приведены расчеты распределения поперечной составляющей магнитного поля в поперечном сечении упомянутой выше системы двух волокон и волокна типа «несимметричная панда». В системе из двух волокон могут осуществляться два типа колебаний (на рис. 2 распределения поля для них показаны вблизи отсечки). Распределения поля для волокна типа «несимметричная панда» вблизи и вдали от отсечки приведены на рис. 3, а и б соответственно.

Рис. 2. Распределение поперечной магнитной составляющей электромагнитного поля системы двух волокон: а — при V=4, b=0,44 (первый тип колебаний); б — при V=4, b=0,19 (второй тип колебаний)

В заключение отметим, что приведенный алгоритм может быть использован для расчета не только волоконных световодов, но и различных открытых волноведущих систем техники СВЧ.

Рис. 3. Распределение поперечной магнитной составляющей электромагнитного поля вблизи (а) и вдали от отсечки (б) для волокна типа «несимметричная панда»: a — при V=2.5, b=0.014; δ — при V=10, b=0.79

ЛИТЕРАТУРА

1. Боголюбов А. Н., Красильникова А. В.//Радиотехн. и электроника. 1994. **39**, № 2. С. 233.

2. Боголюбов А. Н., Лопушенко В. В.//Там же. 1988. 33, № 11. С. 2296. 3. Bettess P.//Int. J. Numer. Math. Eng. 1977. 11. Р. 53.

Поступила в редакцию 29.06.94