УДК 546.3

РЕНТГЕНОВСКОЕ И МЕССБАУЭРОВСКОЕ ИССЛЕДОВАНИЕ СПЛАВА Mn_{2.75} Fe_{0.25}AI, ИЗОСТРУКТУРНОГО β-Mn

А. С. Виноградова, В. С. Засимов, А. С. Илюшин, И. А. Никанорова, И. С. Никаноров

(кафедра физики твердого тела)

В результате комплексного рентгеновского и мёссбауэровского исследования установлены особенности локальных распределений атомов железа и алюминия в сплаве β — $Mn_{2,75}Fe_{0,25}Al$ после различных видов термообработки.

Известно [1], что структура β -марганца имеет два типа структурно-неэквивалентных положений: 8(c) и 12(d). Это позволяет предположить возможность образования упорядоченных соединений при замещении атомов, занимающих эти положения, атомами другой химической природы. Исследования показали, что в сплавах твердых растворов железа, алюминия и других металлов в β -модификации марганца обнаруживается локальное атомное упорядочение [2—5], а при низких температурах в этих сплавах формируется магнитное упорядочение [6—11]. В некоторых случаях может сформироваться сверхструктура со стехиометрией $A_4B_4C_{12}$, упорядоченной по типу Au_4A] [12], и тогда положения 8(c) образуют две подгруппы — 4(a) и 4(b).

В настоящей работе проведено комплексное исследование сплава нестехиометрического состава β-Mn_{2,75}Fe_{0,25}Al, подвергнутого различным видам термообработки, с целью определения степени дальнего порядка для атомов железа, установления взаимосвязи между атомным и магнитным упорядочением, а также связи атомного упорядочения с параметрами сверхтонких взаимодействий.

Образцы системы Мп—Fe—Al состава Мп_{2,75}Fe_{0,25}Al были выплавлены из металлов чистотой 99,99% и отожжены в течение двух недель при температуре 950 °C. После гомогенизации сплав подвергался закалке с температуры 1250 °C (образец № 1) и отпуску при температурах 750 °C в течение 150 ч (образец № 2) и 500 °C в течение 750 ч (образец 3) с последующей закалкой в воду для фиксации β-модификации марганца.

Рентгеновский фазовый анализ подтвердил однородность образцов и изоструктурность β-марганцу.

Для экспериментального определения локального распределения атомов алюминия по структуре β -марганца мы воспользовались методикой расчетов и анализа данных, подробно описанной в [3]. Оказалось, что во всех трех исследуемых образцах атомы алюминия преимущественно заполняют положения 8(c). В образцах № 1 и 2 имеет место частичное перераспределение атомов между позициями 4(a) и 4(b).

Расшифровка мёссбауэровских спектров проводилась по методике, описанной в [13]. Мёссбауэровские спектры поглощения были подобны друг другу и обладали однотипной сверхтонкой структурой. В таблице приведены мёссбауэровские параметры парциальных спектров.

Из данных таблицы видно, что изомерные химические сдвиги парциальных спектров $\delta_{8(c)}$ и $\delta_{12(d)}$ различных образцов отличаются друг от друга, разница $|\delta_{8(c)} - \delta_{12(d)}|$ возрастает, составляя 0,17; 0,18 и 0,21 мм/с для образцов № 1, 2 и 3 соответственно. Это свидетельствует о том, что электронная конфигурация ионов железа в положениях 12(d) при разных видах термообработки меняется слабо, а в положениях 8(c) — сильнее. Различие в этих конфигурациях возрастает от образца к образцу, а наибольшим изменениям подвержен образец №3.

Обра- зец	Позиция	Изомерный сдвиг б. мм/с (±0,02)	Квадрупольные взаимодействия ΔЕ, мм/с, (±0,02)	Площадь S отн. ед. (±0,02)
1	12(d)	0,18	0,25	0,75
2		-0,01 -0,18 0,00	0,72 0,26 0,72	0,24
3	12(d) 8(c)	-0,19 0,02	0,26 0,62	0,78 0,22

Мёссбауэровские параметры образцов Mn_{2,75}Fe_{0,25}Al

Для этого же образца обнаруживается и заметное изменение величины квадрупольного взаимодействия ионов железа в положениях 8(c), а именно уменьшение почти на 15% по сравнению с образцами N 1 и 2. По нашему мнению, это связано с заметным изменением локальной зарядовой симметрии окружения ионов железа в положениях 8(c).

Данные об относительных площадях парциальных спектральных дублетов дают информацию о локальных распределениях ионов железа по положениям 8(c) и 12(d). По этим данным определялись средние значения концентрации ионов железа в положениях 8(c) и 12(d)для каждого образца. Были также рассчитаны параметры дальнего порядка η . Это позволило определить параметры η_{Fe} , характеризующие распределения ионов железа по структуре β -Mn. Известно, что при статистическом распределении ионов Fe $\eta=0$. Расчет параметра η для гипотетического случая, когда все железо сосредоточено в позициях 12(d), дал значение $\eta=0,104$. В нашем случае оказалось, что для образца № 1 $\eta_{Fe}=0,041$, для образцов № 2 и 3 — 0,047, что составляет 45,2% от максимально возможного η .

Таким образом, во всех образцах обнаруживается преимущественное заполнение атомами железа положений $12(d_i)$, т. е. имеет место избирательное взаимозамещение, или упорядочение атомов, а длительный изотермический отжиг образцов № 2 и 3 приводит к более высокой степени порядка по сравнению с закалкой с температуры 1250 °С. Резкое изменение параметра квадрупольного взаимодействия положения 8(c) в образце № 3, упомянутое выше, должно быть связано только с перераспределением атомов алюминия, поскольку нет разницы в распределениях атомов железа по позициям 8(c) и 12(d) в образцах № 2 и 3.

На образцах сплава были выполнены магнитные измерения. Были получены зависимости магнитного момента сплава от температуры в интервале от 4,5 К до 55 К.

Для образцов № 1 и 2 не выявлено каких-либо аномалий, связанных с появлением магнетизма в них. На рисунке приведена кривая температурной зависимости магнитного момента M(T) для образца № 3. Понижение температуры от 55 К до 20 К не обнаруживает (на кривой каких-либо особенностей, и в пределах точности измерений магнитный момент M можно считать нулевым. При дальнейшем понижении температуры M монотонно возрастает, но не достигает насы-

щения. Сделанная нами оценка величины М при 4,5 К в поле Н= =357.5 Э дало величину 1,5.10-5 ед. СГСМ, что соответствует 0,11 µв.

Таким образом, можно считать, что образец № 3 при 20 К переходит в магнитоупорядоченное состояние.

В результате проведенного исследования было установлено, что сплав Mn_{2.75}Fe_{0.25}Al после различных видов термообработки характеризуется различным локальным атомным распределением. По мере понижения температуры изотермического отжига сначала равновесную конфигурацию в сплаве формируют атомы железа, а затем уже атомы алюминия. При наиболее упорядочен-

ном состоянии (образец № 3) атомы железа сосредоточиваются преимущественно в положениях 12 (d) и характеризуются коэффициентом дальнего порядка 0,047. Атомы алюминия преимущественно сосредоточены в положениях 8(с). В образце № 3 обнаружено и магнитное упорядочение.

ЛИТЕРАТУРА

- 1. Preston G. D.//Phil. Mag. 1928. 5, N 32, P. 1207.
- 2. Илюшин А. С., Корчажкин В. В.//ФТТ. 1980, 49, № 6. С. 1323.
- 3. Никанорова И. А., Илюшин А. С., Кацнельсон А. А., Корчажкин В. В. Локальное распределение атомов в сплавах квазибинарной системы Мп₁₂Al_{8-х}Fe_x, изоструктурной β-Мп: Деп. ВИНИТИ № 465-82. М., 1982. 4. Илюшин А. С., Никанорова И. А., Засимов В. С. и др. Локальное рас-

- 6. Mekata M., Nakahashi Y., Yamaoka T.//J. Phys. Soc. Japan. 1974. 37. P. 1509.
- Hori T.//J. Phys. Soc. Japan, 1975. 38. P. 1780.
- 8. Nishihara Y., Ogawa S., Waki S./J. Phys. Soc. Japan. 1977. 42. Р. 845. 9. Илюшин А. С., Никанорова И. А., Николаев А. А.//Изв. вузов, Физика. 1984. № 6. C. 116.
- Илюшин А. С., Никанорова И. А., Абу-Эль Аал М. М., Чечерни-ков В. И.//Физика магнитных материалов. Калинин, 1987. С. 95.
 Илюшин А. С., Машаев С.-М. Ш., Бислиев А.-Х. М.//Магнетизм редкозе-мельных сплавов. Грозный, 1988. С. 67.
 Ullner O. E.//Aktiv för kemi, mineralogy och geologi. 1940. Band 14A, N 3.
- P. 1.
- 13. Илюшин А. С.//Вестн. Моск. ун-та. Физ. Астрон. 1980. № 1. С. 94 (Moscow University Phys. Bull. 1980. N 1. P. 102).

Поступила в редакцию 21.06.95