УДК 669.863:538

МАГНИТНЫЕ СВОЙСТВА МОНОКРИСТАЛЛОВ СОЕДИНЕНИЙ SmFe_{11--x}Co_xTi

С. А. Никитин, И. С. Терешина, Т. И. Иванова, Ю. Ф. Попов

(кафедра общей физики для естественных факультетов)

Исследовано влияние замещения атомов Fe атомами Co на магнитные свойства монокристаллов соединений SmFe_{11-x}Co_xTi (x=0, 1, 2, ..., 6) в импульсных магнитных полях до 120 кЭ в температурном интервале от 4,2 K до 300 K. Получены концентрационные зависимости констант магнитной анизотропии K_1 и K_2 , а также полей анизотропии H_a . Обнаружены индуцированные внешним полем магнитные фазовые переходы в этих соединениях.

Изучению редкоземельных соединений уделяется в настоящее время большое внимание в связи с поиском новых материалов для изготовления постоянных магнитов. Объектом наших исследований стала система $SmFe_{11-x}Co_xTi$ (x=0, 1, 2, ..., 6) со структурой ThMn₁₂. Цель исследования — выяснить влияние замещения атомов Fe атомами Co на магнитные свойства этих соединений в магнитных полях до 120 кЭ. Следует отметить, что при замещении железа кобальтом повышается температура Кюри исследуемых соединений, что очень важно_при использовании их для создания постоянных магнитов [1].

Структурные и магнитные свойства системы SmFe_{11-x}Co_xTi рассматривались в работах [2, 3]. В работе [2] утверждается, что однофазные материалы со структурой ThMn₁₂ могут быть синтезированы только для x < 2, а при x > 2 появляется значительное количество фазы со структурой Th₂Zn₁₇. В работе [3] изучены свойства соединений Sm (Fe_{1-x}Co_x)_{10.8}Ti_{1,2} со структурой ThMn₁₂, однако концентрационное исследование было ограничено составами с x < 0,3.

В работе [4] проведено исследование магнитных свойств соединений SmFe_{11-x}Co_xTi в магнитных полях до 20 кЭ. Показано, что соединения SmFe_{11-x}Co_xTi ($0 \ll x \ll 6$) имеют структуру ThMn₁₂ во всем исследованном интервале концентраций.

Настоящее исследование системы SmFe_{11-x}Co_xTi проводилось в импульсных магнитных полях до 120 кЭ в интервале температур 4,2 К — 300 К, что представляет научный и практический интерес, поскольку позволяет изучить как магнитокристаллическую анизотропию данных высокоанизотропных соединений, так и магнитные фазовые переходы, возникающие под действием внешнего магнитного поля.

Получение образцов и экспериментальная методика

Технология приготовления и контроль качества образцов системы SmFe_{11-x}Co_xTi полностью аналогичны приведенным ранее в работе [4].

Магнитные свойства соединений SmFe_{11-x}Co_xTi изучались в импульсных магнитных полях до 120 кЭ. Импульсные поля получались по стандартной методике путем разряда батареи конденсаторов на многовитковый соленоид с охлаждением жидким азотом. Длительность импульса поля — 7—10 мс. Намагниченность измерялась индукционным методом с помощью дифференциальных катушек [5]. Сигнал от образца интегрировался и подавался на *y*-вход осциллографа. Сигнал, пропорциональный полю, с измерительной катушки через интегрирующую RC-цепь подавался на x-вход осциллографа. Полученная зависимость намагниченности от поля $\sigma(H)$ регистрировалась путем фотографирования. Погрешность измерения поля — 5%, а намагниченности — 7%. Для измерения намагниченности при низких температурах вставка с образцом и дифференциальными катушками помещалась в проточный гелиевый криостат. Температура измерялась термопарой Cu—Fe—Cu.

Обсуждение результатов

Кривые зависимости намагниченности от поля для соединений SmFe_{11-x}Co_xTi (x=0, 2, 5, 6), измеренные при T=4,2 К вдоль оси легкого намагничивания (ОЛН) $\sigma_{\parallel}(\hat{H})$ и вдоль оси трудного намагничивания (OTH) o₁(H), представлены на рис. 1. Величина намагниченности насыщения зависит от концентрации кобальта: для соединения σ_s=143 Гс.см³/г, а для SmFenTi соединения SmFe₅Co₆Ti $\sigma_s =$ =138 Гс.см³/г. Максимальное значение намагниченности насыщения получено для состава SmFe₈Co₃Ti ($\sigma_s = 146 \ \Gamma c \cdot c M^3/r$). Значения σ_s , полученные в импульсных магнитных полях, хорошо согласуются со значениями, измеренными в постоянных магнитных полях при H< <20 кЭ [4]. Основные магнитные характеристики для системы SmFe_{11-x}Co_zTi представлены в табл. 1. Поле магнитной анизотропии На определялось как поле, соответствующее пересечению кривых $\sigma_{\parallel}(H)$ и $\sigma_{\perp}(H)$.

Таблица 1

_	σ _s , Гс-см ³ /г		Н _а , кЭ			
Состав	78 K	300 K	78 K	300 K	Т _с , К	
SmFe ₁₁ Ti	143	126	212	102	600	
SmFe ₁₀ Co ₁ Ti	145	132	203	98	720	
SmFe9Co2Ti	145.5	134	180	71	820	
SmFe ₈ Co ₃ Ti	146	135	123	48	870	
SmFe7C04Ti	144	132	72	35	920	
SmFe ₆ Co ₅ Ti	141	129	40	25	960	
SmFe ₅ Co ₆ Ti	138	124	-	-	975	

Основные магнитные характеристики соединений SmFe_{11-x}Co_xTi

Данная таблица восполняет отсутствующие в литературе данные о полях магнитной анизотропии H_a соединений SmFe_{11-x}Co_xTi для концентраций атомов кобальта $x \gg 3$.

На рис. 2 представлены кривые намагничивания для состава SmFe₈Co₃Ti при температурах 4,2 K, 78 K и 300 K.

При анализе поведения намагниченности одноосного ферромагнетика, помещенного во внешнее магнитное поле, необходимо наряду с энергией анизотропии учесть зеемановскую энергию [6]:

$$E = K_1 \sin^2 \theta + K_2 \sin^4 \theta - HI_s \cos (H^{-}I_s),$$

где K_1 и K_2 — первая и вторая константы магнитной анизотропии, I_s — намагниченность насыщения, θ — угол между вектором I_s и осью с кристалла. Анализ процесса намагничивания данных соединений в направлении ОТН позволяет условно разделить их на две группы: 1) соединения с плавным увеличением намагниченности при возрастании внешнего магнитного поля; 2) соединения, в которых наблюдается более резкий рост намагниченности после достижения некоторого критического поля.

(1)

Рис. 1. Кривые намагничивания монокристаллов SmFe_{11-x} Co_xTi, измеренные при T=4,2 К вдоль ОЛН и ОТН (0 $\ll x \ll 6$)

Рис. 2. Зависимость удельной намагниченности от внешнего магнитного поля для монокристалла SmFe₈Co₃Ti, измеренная вдоль ОЛН и ОТН при T=4,2 K, 77 K, 300 K

Для соединений первой группы членами высоких порядков в выражении (1) можно пренебречь, в то время как для соединений второй группы эти члены вносят заметный вклад в энергию магнитной анизотропии.

В результате математической обработки кривых намагничивания по методу, предложенному в [7], определены значения констант магнитной анизотропии K_1 и K_2 . Экспериментальная ошибка в определении констант составила ~10%. Результаты расчета K_1 и K_2 при температурах 4,2 K, 78 K и 300 K представлены в табл. 2.

Как видно из табл. 2, при комнатной температуре константа анизотропии K_2 для соединений SmFe_{11-x}Co_xTi ($0 \le x \le 3$) почти на порядок меньше значения константы K_1 , но в области низких температур значение константы K_2 увеличивается почти в 10 раз.

Скачкообразный рост намагниченности $\sigma_{\perp}(H)$ вдоль ОТН (см. рис. 1 и 2), по-видимому, объясняется фазовыми переходами, индуцированными внешним магнитным полем. Подобное поведение наблюдалось ранее и в других системах [8]. Изломы на кривых $\sigma_{\perp}(H)$ наиболее ярко выражены для составов SmFe_{11-x}Co_xTi с малым содержанием Co ($x \leq 2$).

Таблица 2

Состав	T = 4	T = 4.2 K		T = 78 K		T = 300 K	
	Ki	K2	Ki	K ₂	K ₁	K ₂	
SmFe ₁₁ Ti	7,6	2,2	7,5	2,2	3,4	0,3	
SmFe ₁₀ Co ₁ Ti	7,6	2,2	7,5	2,2	3,5	0,3	
SmFe ₃ Co ₂ Ti	7,0	2,0	7,0	1,8	3,0	0,3	
SmFe ₈ Co ₃ Ti	5,6	1,3	5,6	1,2	2,6	0,3	
SmFe ₇ Co ₄ Ti	4,5	1,1	4,4	1,0	1,5	0,2	
SmFe ₆ Co ₅ Ti	2,9	0,6	2,9	0,5	0,8	0,2	

Значения констант магнитной анизотропии K_1 и K_2 (10⁷ эрг/см³)

Следует отметить, что в отличие от соединений SmFe_{11-x}Co_xTi на кривых о₁ (H) для соединений YFe_{11-x}Co_xTi изломы отсутствуют. Хотя металлический радиус иттрия близок к радиусу трехвалентного самария, а его электронная оболочка подобна ионам редких земель, ион иттрия не обладает локализованным магнитным моментом и не вносит вклада в магнитную анизотропию соединений YFe_{11-x}Co_xTi. Поэтому возникновение фазовых переходов в соединениях $SmFe_{11-x}Co_xTi$, по-видимому, связано с особенностями электронной структуры иона самария, у которого энергетические уровни возбужденного состояния образуют сравнительно тесный мультиплет вблизи основного состояния. Это способствует примешиванию к основному состоянию близколежащих энергетических возбужденных состояний, что приводит к возникновению неколлинеарной спиновой структуры в сильных магнитных полях и появлению констант анизотропии более высоких порядков в выражении для энергии анизотропии (1).

Выводы

1. При замещении железа кобальтом в соединениях SmFe_{11-x}Co_xTi значения констант резко уменьшаются, причем К₂ всегда значительно меньше К₁, а температура Кюри Т_с возрастает.

2. Аномалии на кривых $\sigma(H)$ указывают на изменение энергетического состояния ионов самария под действием сильного магнитного поля.

Исследования, описанные в этой публикации, поддержаны грантом М12300 Международного научного фонда и Российского правительства грантом Российского фонда фундаментальных исследований И 94-02-04656.

ЛИТЕРАТУРА

1. Андреев А. В., Богаткин А. Н., Кудреватых Н. В. и др.//ФММ. 1989. **68**, № 1. C. 70.

2. Cheng S. F., Sinha V. R.//Magn. and Magn. Mat. 1988. 75, N 3. P. 330. 3. Solzi M., Xue R. H.//Ibid. 1990. 80, N 1. P. 44.

72

- 4. Золотухин О. А., Зубенко В. В., Иванова Т. И. и др.//Вести. Моск. ун-та. Физ. Астрон. 1993. № 5. С. 80 (Moscow University Phys. Bull. 1993. N 5. P. 73.).
- 5. Попов Ю. Ф. Автореф. дис. ... канд. физ.-мат. наук. М. (МГУ), 1971. 6. Белов К. П. Ориентационные переходы в редкоземельных магнетиках. М., 1979. 7. Supermagnets. Hard Magnetic Materials/Eds. C. J. Long, F. Grandjean. Kluwer Aca-
- demic Publishers, Netherlands. 1991. 8. Melville D., Khan W. I.//IEEE Trans. Magn. 1976. N 6. P. 1012.
- 9. Yang Y. C., Hong S.//Solid State Commun. 1988. 68, N 2. P. 175.

Поступила в редакцию 18.07.95

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1996. № 2

ГЕОФИЗИКА

УДК 550.34

НАБЛЮДЕНИЯ СПЕКТРА ДЕФОРМАЦИЙ ЗЕМЛИ ЛАЗЕРНЫМ ИНТЕРФЕРОМЕТРОМ-ДЕФОРМОГРАФОМ

В. К. Милюков, В. К. Кравчук

(ГАИШ)

Проведены долговременные наблюдения литосферных деформаций в диапазоне частот от $5 \cdot 10^{-6}$ до 10^3 Гц на Северном Кавказе, в Баксанской геофизической об-серватории ГАИШ. Наблюдения выполлены подземным лазерным интерферометром-деформографом с длиной базы 75 м. Полученная оценка спектральной плотности де-формаций определяет фоновый уровень сейсмического шума в широком диапазоне частот.

Длиннобазовые лазерные интерферометры являются наиболее совершенными приборами для измерения относительных изменений расстояний между двумя точками. Частотный диапазон лазерных интерферометров начинается практически от нуля и ограничивается сверху лишь быстродействием применяемой электроники, что в принципе может составлять десятки мегагерц. Динамический диапазон длиннобазовых лазерных интерферометров также практически неограничен, а порог чувствительности к относительным изменениям расстояния на несколько порядков превосходит другие приборы. Важным достоинством лазерных интерферометров является наличие внутреннего эталона длины, в качестве которого используется известная с высокой точностью длина волны лазерного излучения.

Указанные свойства длиннобазовых лазерных интерферометров позволяют использовать их для решения широкого круга фундаментальных и прикладных геофизических задач в качестве деформографов [1—8].

Северная часть Большого Кавказского хребта является одним из наиболее активных в геодинамическом плане регионов России, характеризующимся интенсивными движениями земной коры. Особый интерес представляет Эльбрусский массив, ограниченный с севера Тырныаузской глубинной разломной зоной. Мощность земной коры достигает здесь 60 км и является наибольшей в пределах Кавказа [9]. В целом сейсмическая активность этого региона, помимо продольного разлома, обусловлена продолжающимися подъемами и сводообразным перегибом земной коры в этой зоне.