КРАТКИЕ СООБЩЕНИЯ

ТЕОРЕТИЧЕСКАЯ И МАТЕМАТИЧЕСКАЯ ФИЗИКА

УДК 621.372.823:621.315.61

К ЗАДАЧЕ РАСЧЕТА ДИЭЛЕКТРИЧЕСКИХ ВОЛНОВОДОВ

А. Н. Боголюбов, А. В. Красильникова

(кафедра математики)

Предложены модификация алгоритма саморегулирующейся сетки, позволяющая: эффективно и экономично рассчитывать спектральные характеристики диэлектрических волноводов со сложным заполнением, а также новый метод расчета частот отсечки таких волноводов.

Разработка эффективных и универсальных алгоритмов расчета открытых волноведущих структур является актуальной задачей волоконной оптики. Одной из проблем при расчете таких структур является адекватная аппроксимация граничных условий на бесконечности, а также получение одной из основных характеристик волноведущих систем — частот отсечки мод. В данной работе предлагается алгоритм построения разностной сетки для расчета дисперсионных характеристик вплоть до частот отсечки, а также метод, позволяющий эффективно рассчитывать частоты отсечки.

Рассмотрим круглый однородный вдоль оси диэлектрический волновод, диэлектрическая проницаемость сердцевины которого произвольным образом зависит от поперечных координат: $\varepsilon = \varepsilon(r, \varphi)$. Будем предполагать, что оболочка волновода однородна, имеет диэлектрическую проницаемость ε_{cl} и простирается до бесконечности, что, очевидно, не сужает класс рассматриваемых задач. Решение будем искать в виде распространяющихся мод, имеющих зависимость от времени и продольной координаты z введенной цилиндрической системы координат в виде exp($-i\omega t + i\beta z$), где β — постоянная распространения.

В работе [1] был предложен алгоритм саморегулирующейся сетки. В рассмотренной формулировке были введены асимптотические функции формы на бесконечных элементах $N_{\infty} = \sqrt{\xi/x} \exp(-\varkappa(x/\xi-1))$, где x=r/a, a — радиус сердцевины волокна $\xi=R/a$, R — расстояние, на котором справедлива асимптотика для функции Макдональда, описывающей поле в оболочке $\varkappa=(\beta^2-k_0^2\varepsilon_{cl}R)^{1/2}$ — параметр, на который накладывается условие $\varkappa\gg1$, $k_0=\omega/c$.

Воспользуемся прежними обозначениями и введем сетку в сердцевине обычным образом [1], расположив узлы сетки по координате rравномерно: $x_i = ih$, где $h = 1/k_{co}$, k_{co} — количество узлов сетки в сердцевине. В оболочке же расположим узлы сетки в квадратичной зависимости от номера узла i, т. е. так, чтобы шаг равномерно нарастал с ростом i. Кроме того, потребуем, чтобы первый шаг сетки в оболочке совпадал с шагом сетки в сердцевине. Однако вдали от отсечки толщина слоя [a, R] может быть достаточно малой, и шаг сетки в оболочке будет убывать с ростом номера узла. В этом случае продолжим в оболочку равномерную сетку сердцевины, а для того чтобы количество узлов в оболочке осталось фиксированным (для сохранения размерности обрабатываемых матриц), отнесем начало бесконечного элемента на необходимое расстояние: $R=a+hk_{cl}$ и пересчитаем параметр и. На k-й итерации по $b=(\beta^2/k_0^2-\varepsilon_{cl})/(\varepsilon_{max}-\varepsilon_{cl})$

$$R = \varkappa / (V \sqrt{b_k}),$$

где $V = k_0 a (\varepsilon_{\max} - \varepsilon_{cl})^{1/2}$. Если же $(R-a)/a > hk_{cl}$, то узлы сетки расположатся следующим образом:

$$x_i = 1 + h (i - k_{co})^2 + \frac{\xi - 1 - h k_{cl}^2}{k_{cl} (k_{cl} - 1)} (i - k_{co}) (i - k_{co} - 1).$$

Алгоритм саморегулирующейся сетки, обеспечивая весьма значительную экономию вычислительных ресурсов и времени счета, вблизи отсечки генерирует матрицы достаточно высокого порядка, поскольку сам определяет количество необходимых дополнительных слоев сетки, а следовательно, и размерность матриц. Предлагаемый метод построения сетки существенно облегчает эту проблему, поскольку позволяет задавать размерность матриц путем явного задания числа слоев сетки в оболочке и сердцевине. При этом сетка автоматически подстраивается так, чтобы счет проводился при заданной цене вычислений размерах памяти и времени счета, что позволяет проводить адекватный анализ точности решения для различных участков дисперсионной кривой. Существенным преимуществом данного алгоритма является и то, что при таком подходе не происходит скачка шага на границе «сердцевина-оболочка», что особенно существенно при расчетах вблизи отсечки. Кроме того, предлагаемый способ построения сетки учитывает квадратичный характер убывания полей на бесконечности.

Для вычисления частот отсечки мод диэлектрических волноводов сложного сечения и с произвольным профилем функции диэлектрической проницаемости $\varepsilon(r, \varphi)$ предлагается принципиально новый метод, не связанный с получением характеристического уравнения. Метод основан на том факте, что при отсечке мода перестает существовать как физическая волновая структура. Ее поле в оболочке описывается асимптотикой функции Макдональда для малого аргумента ($b \rightarrow 0$), а в случае аксиально симметричных мод поле уже не уменьшается при удалении от сердцевины и везде в бесконечной оболочке остается постоянной величиной. Такой подход особенно удобен в случае, когда известен азимутальный порядок рассчитываемой моды, как в случае градиентных волокон.

Если на границе «сердцевина—оболочка» диэлектрическая проницаемость непрерывна, для моды градиентного волновода, имеющей азимутальный порядок l, при r=a можно поставить импедансное граничное условие, которое имеет вид $\frac{\partial \psi}{\partial x}(x=1)-Y_l\psi(x=1)=0$. Здесь $\psi(x)$ — поперечная составляющая магнитного поля, зависящая в однородной оболочке только от x. Поскольку $\psi(x) = BK_l (V \sqrt{b}x)$, где B — постоянный коэффициент, K_l — функция Макдональда порядка l, то импеданс

$$Y_{l} = \lim_{b \to 0} V \sqrt{b} \quad \frac{K'_{l} (V \sqrt{b})}{K_{l} (V \sqrt{b})} = -l.$$

При наличии скачка диэлектрической проницаемости на границе «сердцевина—оболочка» импедансное граничное условие удобно ставить не на границе r = a, а на окружности радиуса $\bar{a} > a$.

Для аксиально-симметричных мод (l=0) такой подход в случае скачка функции є позволяет поставить граничное условие Неймана на некоторой фиктивной границе, окружающей сердцевину, или непосредственно на границе r=a при непрерывной є.

Следует отметить, что при расчете частот отсечки матрица задачи будет определяться только вкладами конечных элементов сердцевины волновода и будет иметь размерность k^{2}_{co} . В качестве начального приближения для собственного вектора — моды волокна — берутся, например, тригонометрические функции, а собственные значения — частоты отсечки — находятся методом обратных итераций со сдвигом Рэлея [2].

Моды	V _{cutoff}		
	решение характерис- тического уравнения	расчет предложен ным методом	
LPoz	3,8317	3,8318	
LP_{03}	7,0156	7,0158	
L.P. 04	10,1735	10,1739	
LP_{05}	13,3237	13,3247	
LP_{11}	2,4048	2,4035	
LP_{12}	5,5201	5,5145	
LP_{21}	3,8317	3,8307	
LP_{22}	7,0156	7,0150	
LP_{31}	5,1356	5,1357	
LP_{32}	8,4172	8,4174	
LP_{41}	6,3801	6,3814	
LP_{51}	7,5883	7,5909	

Рис. 1

В табл. 1 приведены значения частот отсечки нескольких первых *LP*₁₀ мол двухслойного волокна, вычисленные предложенным методом (число узлов сетки в сердцевине везде при расчетах полагалось равным 300), в сравнении с результатами, полученными путем решения характеристического уравнения [3].

B качестве примеров расчета спектральных характеристик волокон co сложным профилем функции диэлектрической проницаемости приведены результаты для кусочно-параболических профилей $\varepsilon(r) = \varepsilon(0) +$ $+C_1 x^2 - 2C_1 C_2 x$. На рис. 1 приведены распределения полей LP_{02} моды для профиля с $\varepsilon_{cl} = 2$, $\varepsilon(0) = 3$, $C_1 =$ $=-1,5, C_2=0$ (кривая 1) для различных V. Кривая 2 V = 20.соответствует b ==0,631, и рассчитана предложенным методом. причем, поскольку данная точка находится вдали от отсечки, сетка в оболочке стро-

ится равномерно. Сетка в оболочке с нарастающим шагом использована при расчете для V=7,5, b=0,030 (кривая 3). Кривая 4 соответствует распределению поля в отсечке и рассчитана с помощью предложенного алгоритма вычисления частот отсечки $V_{\text{cutoff}}=7,009$.

На рис. 2 и 3 приведены распределения полей для первых трех LP_{0p} мод для профилей с $\varepsilon_{cl}=2$, $\varepsilon(0)=3$, $C_1=-4$, $C_2=0,3$ и $\varepsilon_{cl}=2,1$, $\varepsilon(0)=2$, $C_1=-1$, $C_2=1$ соответственно. Кривые 1 на этих рисунках показывают вид функций диэлектрической проницаемости.

В табл. 2 приведены вычисленные частоты отсечки для нескольких первых LP_{lp} мод для рассмотренных выше кусочно-параболических профилей.

Рис. 2

Таблица 2

Моды	Vcutoff		
	по рис. 1	по рис. 2	по рис. З
LP_{02}	7,0091	5,6931	4,9785
LP_{03}	12,1653	10,2302	9,2263
LP_{04}	17,1482	14,6170	13,4711
LP_{11}^{**}	4,5608	3,6022	2,4700
$LP_{12}^{}$	4,5607	7,9719	5,9317
LP_{13}	9,6364	12,3300	9,4052
LP_{21}	7,2321	5,7684	3,9089
LP_{22}	12,1780	10,0500	7 4172
LP_{31}	19,5800	7,7920	5,2191
LP_{41}	12,2290	9,7627	6,4677

ЛИТЕРАТУРА

- 1. Боголюбов А. Н., Красильникова А. В.//Вестн. Моск. ун-та. Физ. Астрон. 1995. № 3. С. 3 (Moscow University Phys. Bull. 1995. N 3. Р. 1). 2. Писсанецки С. Технология разреженных матриц. М., 1988.
- 3. Адамс М. Введение в теорию оптических волноводов. М., 1984.

Поступила в редакцию-19.07.95

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ. 1996. № 2

УДК 517.9

РАСЧЕТ КОЛЕБАНИЙ НЕОДНОРОДНЫХ ПЛАСТИН ПРИ ЛОКАЛЬНЫХ воздеиствиях

Г. Н. Медведев, Б. И. Моргунов

(кафедра математики)

Рассматриваются установившиеся колебательные режимы неоднородных пластин при наличии внешних периодических по времени возмущений, локализованных в малой области круговой формы. Для асимптотического определения вектора перемещений используется процедура осреднения.

89