

Рис. 2

Таблица 2

Моды	V _{cutoff}		
	по рис. 1	по рис. 2	по рис. З
LP_{02}	7,0091	5,6931	4,9785
LP_{03}	12,1653	10,2302	9,2263
LP_{04}	17,1482	14,6170	13,4711
LP_{11}^{**}	4,5608	3,6022	2,4700
$LP_{12}^{}$	4,5607	7,9719	5,9317
LP_{13}	9,6364	12,3300	9,4052
LP_{21}	7,2321	5,7684	3,9089
LP_{22}	12,1780	10,0500	7 4172
LP_{31}	19,5800	7,7920	5,2191
LP_{41}	12,2290	9,7627	6,4677

ЛИТЕРАТУРА

- 1. Боголюбов А. Н., Красильникова А. В.//Вестн. Моск. ун-та. Физ. Астрон. 1995. № 3. С. 3 (Moscow University Phys. Bull. 1995. N 3. Р. 1). 2. Писсанецки С. Технология разреженных матриц. М., 1988.
- 3. Адамс М. Введение в теорию оптических волноводов. М., 1984.

Поступила в редакцию-19.07.95

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ. 1996. № 2

УДК 517.9

РАСЧЕТ КОЛЕБАНИЙ НЕОДНОРОДНЫХ ПЛАСТИН ПРИ ЛОКАЛЬНЫХ воздеиствиях

Г. Н. Медведев, Б. И. Моргунов

(кафедра математики)

Рассматриваются установившиеся колебательные режимы неоднородных пластин при наличии внешних периодических по времени возмущений, локализованных в малой области круговой формы. Для асимптотического определения вектора перемещений используется процедура осреднения.

89

Исходные динамические уравнения теории упругости [1] для компонент u и w вектора перемещений $\mathbf{u} = \{u, 0, w\}$ запишем в цилиндрических координатах (r, φ, z) (зависимость от φ отсутствует):

$$\gamma \frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial r} \left(\nu \frac{\partial u}{\partial r} + \lambda \frac{\partial w}{\partial z} + \frac{\lambda}{r} u \right) + \frac{\partial}{\partial z} \left(\mu \frac{\partial u}{\partial z} + \mu \frac{\partial w}{\partial r} \right) + \frac{\partial \Phi}{\partial r}, \quad (1)$$

$$\gamma \frac{\partial^2 w}{\partial t^2} = \frac{\partial}{\partial r} \left(\mu \frac{\partial u}{\partial z} + \mu \frac{\partial w}{\partial r} \right) + \frac{\mu}{r} \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial r} \right) + \frac{\partial}{\partial r} + \frac{\partial}{\partial r}$$

Входящие в (1) плотность γ и коэффициенты Ламе λ и μ существенно изменяются в направлени оси Oz, будем считать их функциями аргумента $\zeta = z/\varepsilon$ (ε — малый параметр). Функция Φ (плотность внешних возмущений, периодичная по t, зависит от аргументов ρ , z, t, $\overline{\varepsilon}$, где $\rho = r/\overline{\varepsilon}$ ($\overline{\varepsilon}$ — малый параметр) и отлична от нуля в малой области $\Delta r \sim \overline{\varepsilon}$.

Далее удобно представить Ф в виде разложения по степеням $\varepsilon: \Phi = = \Phi_0 + \varepsilon \Phi_1 + \dots$. Между малыми параметрами ε , характеризующим степень неоднородности материала пластины, и ε , характеризующим размер области возмущения, возможны различные соотношения, для определенности рассмотрим здесь случай $\varepsilon = \varepsilon$.

Уравнения (1) следует решать совместно с граничными условиями при z=0 и z=t, а также с условием периодичности по t.

Выполним в (1) асимптотическое преобразование [2, 3]:

$$u(\rho, z, \zeta, t, \varepsilon) = \sqrt{\varepsilon} \overline{u}_1(\rho, z, t) + \varepsilon \overline{u}_2(\rho, z, t) + \varepsilon^{3/2} u_3(\rho, z, \zeta, t) + \dots,$$
(2)

$$w(\rho, z, \zeta, t, \varepsilon) = w_0(z, t) + V\varepsilon w_1(z, t) +$$

+ $\varepsilon w_2(\rho, z, \zeta, t) + \varepsilon^{3/2} w_3(\rho, z, \zeta, t) + \dots$

Подстановка разложений (2) в уравнения (1) позволяет получить рекуррентную систему для последовательного определения коэффициентов в (2). Так, для определения \overline{w}_0 и \overline{w}_1 получаются осредненные по ζ уравнения

$$\widehat{v} \frac{\partial^2 \overline{w}_k}{\partial z^2} = \langle \gamma \rangle \frac{\partial^2 \overline{w}_k}{\partial t^2}, \ k = 0, \ 1.$$
(3)

В (3) символ $\langle \phi \rangle$ означает осреднение по ζ , а символ $\widehat{\phi}$ означает $\langle \phi^{-1} \rangle^{-1}$.

Для функций w_{k+2} (k=0,1) получаются уравнения

$$\frac{\partial}{\partial \zeta} \left[\lambda \left(\frac{\partial \overline{u}_{k+1}}{\partial \rho} + \frac{1}{\rho} \overline{u}_{k+1} \right) + \nu \left(\frac{\partial \overline{w}_{k+1}}{\partial z} + \frac{\partial w_{k+2}}{\partial \zeta} \right) \right] = 0.$$
(4)

Решение (4) имеет вид [2]

$$w_{k+2} = W_{k+2} (\overline{u}_{k+1}, \ \overline{w}_k) + \overline{w}_{k+2}$$
(5)

(функции \overline{w}_{k+2} не зависят от ζ и подлежат дальнейшему определению). 90 Для определения функций \tilde{u}_1 , \bar{u}_2 получаются следующие уравнения:

$$\frac{\partial}{\partial \rho} \left\{ \nu \frac{\partial \bar{u}_{k+1}}{\partial \rho} + \frac{1}{\rho} \bar{u}_{k+1} \right\} + \lambda \left(\frac{\partial \bar{w}_{k}}{\partial z} + \frac{\partial w_{k+2}}{\partial \zeta} \right) \right\} + \frac{2\mu}{\rho} \left(\frac{\partial \bar{u}_{k+1}}{\partial \rho} - \frac{1}{\rho} \bar{u}_{k+1} \right) + \frac{\partial}{\partial \zeta} \left[\mu \left(\frac{\partial \bar{u}_{k+1}}{\partial z} + \frac{\partial u_{k+3}}{\partial \zeta} + \frac{\partial w_{k+2}}{\partial \rho} \right) \right] = -\frac{\partial \Phi_{k}}{\partial \rho}, \ k = 0, \ 1.$$
(6)

Из (6) получаются осредненные уравнения для \bar{u}_1 и \bar{u}_2 : $a_{k+1} \frac{\partial}{\partial \rho} \left(\frac{\partial \bar{u}_{k+1}}{\partial \rho} + \frac{1}{\rho} \bar{u}_{k+1} \right) = -\frac{\partial \Phi_k}{\partial \rho}, a_{k+1} = \text{const}, k = 0, 1,$ (7)

которые элементарно интегрируются в квадратурах, а также аналогично (5) находятся u_3 и u_4 в виде

$$u_{k+3} = U_{k+3} (\overline{u}_{k+1}, \ \overline{w}_{k+2}) + \overline{u}_{k+3}, \ k = 0, \ 1$$
(8)

(в (8) \bar{u}_{k+3} не зависит от ζ). Функция u_4 нужна для определения \bar{w}_3 . Далее приведем осредненные уравнения, из которых определяются \bar{w}_2 и \bar{w}_3 :

$$\left(\frac{\partial}{\partial\rho} + \frac{1}{\rho}\right) \left(\langle \mu \rangle \frac{\partial \bar{u}_{k+1}}{\partial z} + \langle \mu \frac{\partial U_{k+3}}{\partial \zeta} \rangle + \langle \mu \rangle \frac{\partial \bar{w}_{k+2}}{\partial\rho} + \left\langle \mu \frac{\partial W_{k+2}}{\partial \rho} \right\rangle + b_{k+2} \frac{\partial \bar{u}_{k+1}}{\partial z} = -\frac{\partial \Phi_k}{\partial z}.$$
(9)

Наконец, запишем уравнение, позволяющее определить \bar{u}_3 , сходное с (7):

$$\frac{\partial}{\partial \rho} \left\{ \left\langle \nu \left(\frac{\partial u_3}{\partial \rho} + \frac{1}{\rho} u_3 \right) \right\rangle + \left\langle \lambda \left(\frac{\partial w_2}{\partial z} + \frac{\partial w_4}{\partial \zeta} \right) \right\rangle + \left\{ \frac{2\mu}{\rho} \left(\frac{\partial u_3}{\partial \rho} - \frac{1}{\rho} u_3 \right) \right\} \right\} + \left\langle \mu \frac{\partial}{\partial z} \left(\frac{\partial \overline{u_1}}{\partial z} + \frac{\partial u_3}{\partial \zeta} \right) + \frac{\partial w_2}{\partial \rho} \right\} = \left\langle \gamma \right\rangle \frac{\partial^2 \overline{u_1}}{\partial t^2} - \frac{\partial \Phi_2}{\partial \rho}.$$
(10)

Заметим, что уравнение (9) и соответствующее осредненное уравнение (10) имеют ту же структуру, что и уравнение (7), т. е. интегрируются в квадратурах. Входящая в (10) функция w_4 определяется из соответствующего (9) неосредненного уравнения при k=0.

Таким образом определяются коэффициенты \bar{u}_1 , \bar{u}_2 , u_3 , \bar{w}_0 , \bar{w}_1 , w_2 , w_3 разложений (2). Отметим, что если граничные условия для \bar{w}_0 и \bar{w}_1 нулевые, то из (3) следует, что \bar{w}_0 и \bar{w}_1 тождественно равны нулю. Однако, если например, на пластину кроме локальных возмущений действуют силы с плотностью $\mathbf{f} = \{0; 0; f(z, t, \bar{\varepsilon})\}$, то соответствующие (3) неоднородные уравнения будут допускать ненулевые решения.

Сходным образом исследуются установившиеся колебания неоднородных пластин при поверхностных локальных силовых возмущениях, а также при кинематических воздействиях.

ЛИТЕРАТУРА

- 1. Ландау Л. Д., Лифшиц Е. М. Теория упругости. М., 1965. 2. Бахвалов Н. С., Панасенко Г. П. Осреднение процессов в периодических средах. М., 1984.
- 3. Медведев Г. Н., Моргунов Б. И.//Вестн. Моск. ун-та. Физ. Астрон. 1993. № 2. С. 64 (Moscow University Phys. Bull. 1993. N 2. P. 59).

Поступила в редакцию 08.11.95

ВЕСТН. МОСК. УН-ТА. СЕР. 3. ФИЗИКА. АСТРОНОМИЯ. 1996. № 2.

РАДИОФИЗИКА

УЛК 621.391.81

влияние поглощения на отражение радиоволн от ионосферы при наклонном зондировании

В. Д. Гусев, Е. Г. Михайлова, Л. И. Приходько

(кафедра физики атмосферы):

Рассмотрено строгое решение задачи распространения радиоволи в неоднородном ионосферном слое с линейным профилем диэлектрической проницаемости и поглощения. Получено точное решение для комплексного коэффициента отражения от слоя. Показано, что даже при слабом поглощении затухание радиоволн в слое может быть достаточно сильным, а отражение практически отсутствует.

Для изучения земной ионосферы и решения практических задач радиосвязи широко используются радиоволны декаметрового диапазона. Однако поскольку достаточно надежные способы определения параметров радиосигналов, распространяющихся в ионосферной поглощающей плазме, отсутствуют, разработка и усовершенствование методов расчета поглощения, фазы и других характеристик радиоволн, отраженных от ионосферы, остаются актуальными и в настоящее время.

Наиболее распространенные способы определения характеристик отраженного радиосигнала основаны на использовании приближения геометрической оптики [1, 2] и численных методов [3]. Известно, что геометрооптическое описание электромагнитного поля является приближенным и, вообще говоря, не всегда верным. Так, используя это приближение, невозможно найти поле вблизи области отражения, а также предсказать поле в средах с относительно большим поглощением. В подобных случаях необходимо строгое решение волнового уравнения. Кроме того, точное решение нужно знать при определении границ применимости приближенных методов. Так, в работах [4, 5] для экстраполяции геометрооптического приближения в область отражения использовалась модель изотропного поглощающего линейного слоя в окрестности точки отражения при нормальном падении волны. В настоящей работе результаты [4, 5] обобщаются на случай наклонного зондирования, а неоднородный ионосферный слой аппроксимируется толстым линейным поглощающим слоем.

Целью работы является выяснение вопроса о влиянии поглощения на распространение радиоволн в ионосфере при наклонном зондировании.

В работе рассматривается распространение радиоволн в одномерно-неоднородном слое изотропной ионосферной плазмы. Ось z декар-