сопротивления [1]. Однако для средних и крупных частиц, начиная с некоторого числа Рейнольдса потока, имеет место отклонение от линейного закона.

Таким образом, определяя из уравнения (1) с учетом (2) коэффициент сопротивления Ср, из соотношения (3) легко получить расчетную формулу для параметра нелинейности n:

$$n = \log_{\mathbf{v}_t/(\omega_p d)} \left(\frac{C_p}{\alpha} \right).$$

На рисунке приведен график зависимости параметра нелинейности n от числа Рейнольдса потока Re. Каждая из семейства кривых по-

строена для определенной крупности частиц. Для случая, когда Re становится больше некоторого критического значения, взаимодействие потока со средними и крупными (более 10 мкм) частицами носит нелинейный характер, определяющий замедление частиц этих фракций в турбулентном потоке жидкости.

Итак, установлено, что при переходе от ламинарного движения жидкости к турбулентному для частиц малой крупности необходимо учитывать нелинейность их взаимодействия с потоком.

-ЛИТЕРАТУРА

- 1. Пыркин Ю. Г., Силаев М. А.//Вестн. Моск. ун-та. Физ. Астрон. 1993. № 2. С. 77 (Moscow University Phys. Bull. 1993. N 2. Р. 75).
- 2. Медников Е. П. Турбулентный перенос и осаждение аэрозолей. М., 1981.
- 3. Соу С. Гидродинамика многофазных систем. М., 1971. 4. Hwang P.//J. Hydraulic Engineering. 1983. 8, N.3.
- 5. Галкин С. В., Силаев М. А., Пыркин Ю. Г. Экспериментальное исследование энергообмена в турбулентном плотностном течении: Деп. ВИНИТИ. № 6081-B88. M., 1988.

Поступила в редакцию 29.05.95

(6)

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1996. № 4

УДК 551.466

новый тип уединенных волн на воде

С. А. Арсеньев, М. М. Вахрушев, Н. К. Шелковников

(кафедра физики моря и вод суши)

Рассматривается задача описания нелинейных процессов, управляющих распро-странением уединенных волн на воде. Классическая теория Кортевега-де Фриза обобщается на случай учета нелинейного взаимодействия амплитудной и частотной дисперсий. Полученные формулы, предсказывающие уединенную волну нового типа, проверяются с помощью лабораторных экспериментов.

4 ВМУ, № 4, физика, астрономия

81

Уединенные волны на воде экспериментально открыты Дж. Расселом в 1834 г. Существовавшая к тому времени линейная теория не описывала подобные волны. Теоретические поиски Буссинеска, Рэлея, Кортевега и де Фриза [1] показали тем не менее, что учет нелинейности в первом приближении дает возможность получить колоколообразный импульс типа уединенной волны, движущийся со скоростью

 $c = c_0 [1 + (\eta_0/2H)],$

где $c_0 = \sqrt{gH}$ — лагранжева скорость длинных волн в линейном приближении, Н — глубина невозмущенной воды, η_0 — максимальное возмущение ее уровня, g — ускорение силы тяжести. Экспериментальные проверки теории, основанной на уравнении Кортевега-де Фриза, в лабораторных каналах показали, что она удовлетворительно описывает стадию распада первоначального прямоугольного возмущающего импульса на цуг уединенных волн [2]. В большом канале гидрофизической лаборатории МГУ [3] и 36-метровом канале Гренобльского университета во Франции [4-6], однако, наблюдались выходящие за пределы ошибок измерений, но не объясненные отклонения формы волны от классического решения.

По нашему мнению, подобные отклонения можно устранить, учитывая второе, третье и последующие высшие приближения. Попытки построения уточненных теорий длинных волн предпринимались в работах [7—10], которые критиковались в статьях [11, 12], где, в частности, указано, что использованные ряды являются расходящимися и могут служить лишь для получения оценочных, асимптотических формул. По этой причине основное внимание необходимо уделять главным полуторному, второму и третьему приближениям, причем наилучшими параметрами разложения, обеспечивающими сходимость рядов, являются малые параметры амплитудной $\alpha = a/H$ (a - амплитуда) и частотной $\beta = H^2/\lambda^2$ (λ — длина волны) дисперсий [13, 14].

В настоящей статье мы рассмотрим полуторное приближение в теории нелинейных длинных волн на воде, учитывающее нелинейное взаимодействие амплитудной и частотной дисперсий. Эксперименты по проверке теории проводились в лабораторном прямоугольном канале физического факультета МГУ размерами 15×15×330 см. Уединенная волна возбуждалась волнопродуктором, двигающим стенку, параллельную торцу канала, и на расстоянии 2 м от источника фотографировалась на фоне координатной сетки через прозрачную боковую стенку канала. Погрешность измерений уровня воды фотографическим методом связана только с ценой деления координатной сетки и в наших экспериментах составляла 1 мм.

Будем исходить из системы уравнений для возмущенного уровня п и средней скорости течения U, полученной во втором приближении в работе [14]:

$$\Pi_1 - (\beta^2 / 120) \,\partial_{xxxxx}^5 \,U + O(\beta^3) = 0, \tag{1}$$

$$\Pi_2 - (\beta^2/45) \,\partial^5_{xxxxt} \,U + O\left(\beta^3\right) = 0,\tag{2}$$

где

$$\Pi_{1} = \partial_{t} \eta + \partial_{x} U + \alpha \partial_{x} (\eta U), \qquad (3)$$

$$\Pi_{2} = \partial_{t} \eta + \partial_{x} U + \alpha \partial_{x} (\eta U), \qquad (3)$$

$$-3\partial_x \left(\eta \partial_{xt}^2 U\right) - \partial_x \left(U \partial_{xx}^2 U\right) + (3/2) \partial_x \left[(\partial_x U)^2 \right]$$

82

Уравнения (1)—(4) записаны в безразмерных переменных: $\eta = \eta'/a$, $x = x'/\lambda$, z = z'/H, $t = t'c_0/\lambda$ в системе координат с осью z', направленной вверх от горизонтально-однородной поверхности дна, и осью x', направленной вдоль направления распространения волны. Возмущенный уровень воды η' отсчитывается вверх от невозмущенного уровня z' = H. Штрихованными буквами обозначены обычные размерные величины. Символ ∂_x обозначает частную производную $\partial/\partial x$.

Интересующее нас полуторное приближение получается из (1)-(4) при отсутствии квадратичных по α и β членов, но с учетом скрещенных произведений $\alpha\beta$, описывающих нелинейные амплитудно-частотные взаимодействия:

$$\Pi_1 + O(\beta^2) = 0, \ \Pi_2 + O(\beta^2) = 0.$$

(5)

(6)

Следуя [14], будем искать решение системы (2)—(5) в виде $U=\eta + \alpha A + \beta B + \alpha \beta C$,

где $A(\eta)$, $B(\eta)$ и $C(\eta)$ — не определенные пока функции уровня η . Подставляя (6) в (2)—(5), найдем

$$\partial_{t}\eta + \partial_{x}\eta + \alpha \left[\partial_{x}A + \partial_{x} \left(\eta^{2}\right)\right] + \beta \partial_{x}B + \alpha\beta \left[\partial_{x}C - \partial_{x} \left(\eta B\right)\right] + + O\left(\alpha^{2}, \beta^{2}\right) = 0, \qquad (7)$$

$$\partial_{t}\eta + \partial_{x}\eta + \alpha \left[\partial_{t}A + \left(1/2\right)\partial_{x} \left(\eta^{2}\right)\right] + \beta \left[\partial_{t}B - \left(1/3\right)\partial_{xxt}^{3}\eta\right] + + \alpha\beta \left\{\partial_{t}C + \partial_{x} \left(\eta B\right) - \left(1/3\right)\partial_{xxt}^{3}A + \left(1/3\right)\partial_{t} \left(\eta\partial_{xx}^{2}\eta\right) - \partial_{x} \left(\eta\partial_{xt}^{2}\eta\right) - - \left(1/3\right)\partial_{x} \left(\eta\partial_{xx}^{2}\eta\right) + \left(1/2\right)\partial_{x} \left[\left(\partial_{x}\eta\right)^{2}\right] + O\left(\alpha^{2}, \beta^{2}\right) = 0. \qquad (8)$$

Из уравнения (8) необходимо исключить производные функций А, В и С по времени t, используя первое приближение, которое дает уравнение Кортевега—де Фриза [1]

$$\partial_t \eta = -\partial_x \eta - (3/2) \, \alpha \eta \, \partial_x \eta - (\beta/6) \, \partial^3_{xxx} \eta + O \, (\alpha \beta)$$

Учитывая (9), имеем

$$\partial_t A = \partial_\eta A \partial_t \eta = -\partial_\eta A \partial_x \eta - (3/2) \alpha \eta \partial_\eta A \partial_x \eta - (\beta/6) \partial_\eta A \partial_{xxx}^3 \eta.$$

Отсюда находим, учитывая равенство $\partial_{\eta}A = \partial_{x}A (\partial_{x}\eta)^{-1}$, что

$$\partial_t A = -\partial_x A - (3/2) \alpha \eta \partial_x A - (\beta/6) \partial_x A \partial_{xxx}^3 \eta (\partial_x \eta)^{-1} + O(\beta^2), \tag{10}$$

и аналогично для производных $\partial_t B$ и $\partial_t C$. Подставляя их в (8), получим

$$\partial_t \eta + \partial_x \eta - \alpha \partial_x A + \beta \left[-\partial_x B + (1/3) \partial_{xxx}^3 \eta - \partial_x C + \right]$$

$$+ \partial_x (\eta B) + \Pi_3 + O (\alpha^2, \beta^2) = 0. \qquad (11)$$

$$\Pi_3 = (1/3) \partial_x A - (1/3) \partial_x A \partial_{xxx}^3 \eta (\partial_x \eta)^{-1} - (3/2) \alpha \eta \partial_x B + \left]$$

$$+ (1/2) \partial_{xx}^2 (\eta \partial_x \eta) - (1/3) \eta \partial_{xxx}^3 \eta + (5/6) \partial_x \eta \partial_{xx}^2 \eta + \left]$$

$$+ (1/2) \partial_x \left[(\partial_x \eta)^2 \right] + O (\alpha^2, \beta^2) = 0.$$

Сравнивая (11) с (7), получим следующую систему уравнений для определения функций A, B и C:

$$\partial_x A = (-1/4) \partial_x (\eta^2), \ \partial_x B = (1/6) \partial^3_{xxx} \eta, \ \partial_x C = (1/2) \Pi_3.$$

4*

Интегрируя ее, получим

$$A = (-1/4) \eta^2, \ B = (1/6) \partial_{xx}^2 \eta, \ C = (1/4) [\eta \partial_{xx}^2 \eta + (5/6) (\partial_x \eta)^2],$$
(12)

причем постоянные интегрирования при изучении солитонных решений, затухающих на бесконечности, можно положить равными нулю.

Подставляя (12) в (7) или (8), находим эволюционное уравнение для уровня:

$$\partial_t \eta + \partial_x \eta + (3/2) \alpha \eta \partial_x \eta + (\beta/6) \partial_{xxx}^3 \eta + (5/12) \alpha \beta [\eta (\partial_{xxx}^3 \eta) + 2 (\partial_x \eta \partial_{xxx}^2 \eta] + O(\alpha^2, \beta^2) = 0.$$
(13)

Оно является более точным, чем уравнение Кортевега—де Фриза (9), и переходит в него при $\alpha\beta$ =0. Уравнение (13), выведенное здесь нами для поверхностных уединенных волн на воде конечной глубины, только коэффициентами отличается от уравнения Кунина, полученного для волн деформаций в упругой среде с неоднородностями [15].

Заменим в (13) п на Е п. Введем обозначения

$$3\alpha/2 = k, \ \beta/6 = l^2, \ 4\alpha\beta/12 = m$$
 (1)

4)

и будем искать, решение (13) в виде установившейся уединенной волны $\xi = \Theta(s)$, s = x - vt, движущейся с безразмерной скоростью $v = c/c_0$. В этом случае уравнение (13) преобразуется к виду

$$(v-1)\frac{d\Theta}{ds} + \frac{k}{2}\frac{d\Theta^2}{ds} - l^2\frac{d^3\Theta}{ds^3} + \frac{m}{2}\frac{d}{ds}\left[2\Theta\frac{d^3\Theta}{ds^3} + \left(\frac{d\Theta}{ds}\right)^2\right] = 0.$$
(15)

Интегрируя (15), получим

$$(v-1)\Theta + \frac{k}{2}\Theta^2 - l^2 \frac{d^2\Theta}{ds^2} + m \left[\Theta \frac{d^2\Theta}{ds^2} + \frac{1}{2} \left(\frac{d\Theta}{ds}\right)^2\right] = 0.$$
(16)

Константа интегрирования полагается равной нулю, так как функция $\Theta(s)$ считается ограниченной при $s \to \infty$, и уравнение (16) должно удовлетворяться решением $\Theta = \xi = 0$.

Введем безразмерные переменные

$$p = \frac{\sqrt{v-1}}{2l} s; \quad \vartheta = \frac{k}{3(v-1)} \Theta.$$
(17)

Тогда уравнение (16) принимает вид

$$(1-\delta\vartheta)\frac{d^2\vartheta}{dp^2} - \frac{\delta}{2}\left(\frac{d\vartheta}{dp}\right)^2 - 6\vartheta^2 - 4\vartheta = 0.$$
 (18)

Уравнение (18) содержит единственный безразмерный параметр

$$\delta = \frac{3(v-1)m}{kl^2}.$$
 (19)

Умножая (18) на do/dp и интегрируя, находим первый интеграл:

$$\frac{d\vartheta}{dp} = 2\sqrt{\frac{\vartheta^2 + \vartheta^3 + \text{const}}{1 - \vartheta\vartheta}}.$$
(20)

Интересующее нас решение типа уединенной волны получается из (20) при const=0. Полагая также в (20) $\delta > 0$ и интегрируя, находим

$$p = \operatorname{Arcth} \zeta + \sqrt{\delta} \operatorname{arcctg} \frac{\zeta}{\sqrt{\delta}} + C_1, \qquad (21)$$

84

$$\zeta = \pm \sqrt{\frac{1-\delta\vartheta}{1+\vartheta}}$$

и $|\xi| > 1$. Интеграл (21) описывает несколько ветвей кривой $\vartheta(p)$ в зависимости от изменения параметра ξ и значения константы C_1 . Выбирая ветвь, соответствующую однозначному гладкому решению $\vartheta(p)$, окончательное решение $p(\vartheta)$ можно записать в параметрической форме:

$$p = \operatorname{Arcth} \zeta + V \overline{\delta} \operatorname{arcctg} \frac{1\zeta_1}{V \delta},$$

$$\vartheta = \frac{1 - \zeta^2}{\delta + \zeta^2} < 0, \ \delta > 0, \ |\zeta| > 1.$$

Аналогично случаю $\delta < 0$ ($\delta = -1$) соответствует интеграл

$$p = \operatorname{Arcth} \zeta - \sqrt{-\delta} \operatorname{Arcth} \frac{\zeta}{\sqrt{-\delta}} + C_2.$$
(24)

Физически значимая, гладкая ветвь решений (24) выбирается при $C_2=0, \vartheta < 0, |\zeta| < 1.$ Следовательно,

$$p = \operatorname{Arcth} \zeta - \sqrt{-\delta} \operatorname{Arcth} \frac{\zeta}{\sqrt{-\delta}}.$$
 (25)

Формулы (23), (25) и представляют искомое решение задачи.

При δ=0 из (23), (25) получается уединенная волна Кортевега де Фриза:

$$\vartheta = -\operatorname{sech}^2 p$$
,

соответствующая в размерном виде формуле

$$\eta' = \eta_0 \operatorname{ch}^{-2} \left[\left(\frac{x' - ct'}{2H} \right) \sqrt{\frac{3\eta_0}{H}} \right].$$

где

$$\eta_0 = 2H\left(\frac{c-c_0}{c_0}\right).$$

Таким образом, в решении (23), (25) первый член соответствуетклассической теории. Отличие от нее определяется вторым членом, в частности, при $\delta \rightarrow \infty$ легко получить асимптотику

$$\vartheta \rightarrow -\cos^2 \frac{\rho}{\sqrt{\delta}}$$

или в размерной форме:

$$\eta' \rightarrow 2H\left(\frac{c}{c_0}-1\right)\cos^2\frac{x'-ct'}{2H\sqrt{5/6}}.$$

На рис. 1 показаны результаты лабораторных экспериментов и расчетов по полученной формуле (23), а также классическое решение (27). Точки соответствуют осредненной форме трех сфотографированных уединенных водн, отвечающих одним и тем же начальным условиям: $\eta_0=3,35$ см и H=6,0 см. Приведена только левая часть уединен-

85

(23)

(26)

(27)

ной волны, поскольку она является зеркальным отражением правой части.

Рис. 1. Зависимость уровня поверхности воды у от продольной координаты х для половины уединенной волны, рассчитанная по формуле (27) — штриховая линия (классическая теория) и формуле (23) — сплошная (уточненная теория). Точки соответствуют наблюдениям в лабораторном канале

Рис. 2. То же, что и на рис. 1, для цунами в океане

Анализируя рис. 1, можно отметить, что исследованный нами эффект является небольшим, хотя и обнаруживаемым наблюдениями. Это верно, однако, только в лабораторных условиях. На рис. 2 в качестве примера приведен расчет уединенных волн с начальными условиями $\eta_0 = 10$ м и H = 4 км, соответствующими реальному цунами в океане [1]. Как видим, отклонение формы уединенной волны, предсказываемой уравнением (25), от классического решения является настолько существенным, что мы можем говорить о новом типе уединенных волн на воде, описываемых построенной в данной работе теоретической моделью.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект № 95-05-16028-а).

ЛИТЕРАТУРА

- 1. Ле Блон П., Майсек Л. Волны в океане. Т. 1, 2. М., 1981. 2. Наттаск J. L., Segur H.//J. Fluid Mech. 1974, 65. Р. 289.

- Наттаск J. L., Segur H.//J. Гина месп. 1914. 00. Г. 205.
 Рейхрудель А. Э., Аникешева К. И.//Тр. Сахалинского комплексного НИИ. 1973. Вып. 32. С. 188.
 Seabro-Santos F. J., Renouard D. P., Temperville A. M.//Ann. Geo-phys. 1988. 6, (6). Р. 671.
 Renouard D. P., Seabro-Santos F. J., Temperville A. M.//Dynamics of Atmosphere and Ocean. 1985. 9. P. 341.
 Scabro-Santos F. J. Temperville A. M. Renouard D. P.//Eur. J.
- 6. Scabro-Santos F. J., Temperville A. M., Renouard D. P.//Eur. J. Mech., B/Fluids, 1989, 8, N 2, P. 103.
- 7. Laiton E. V.//J. Fluid. Mech. 1960. 9. P. 430.
- 8. Chaplear J. E.//J. Geophys. Res. 1962. 67. P. 257. 9. Fenton J. D.//J. Fluid. Mech. 1972. 53. P. 257.
- 9. Fenton J. D.//J. Fluid. Mech. 1972. 53. P. 257.
 10. Longuet-Higgins M. S., Fenton J. D.//Proc. R. Soc. (London). 1974. Ser. A. 340. P. 471.
 11. Germain J. P.//C. R. Acad. Sci., Paris. 1966. 262. P. 546.
 12. Witting J.//SIAM J. Appl. Math. 1975. 28. P. 700.
 13. Schwartz L. W., Fenton J. D.//Ann. Rev. Fluid Mech. 1982. 14. P. 39.
 14. Арсеньев С. А.//ДАН. 1994. 334, № 5. С. 635.
 15. Кунин И. А. Теория упругих сред с микроструктурой. М., 1975.

Поступила в редакцию 13.11.95

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1996. № 4

АСТРОНОМИЯ

УДК 524.78

МУЛЬТИПОЛЬНЫЕ ГАРМОНИКИ ПОЛЯРИЗАЦИИ РЕЛИКТОВОГО ИЗЛУЧЕНИЯ

М. В. Сажин, В. В. Шульга

(ГАИШ)

Рассматривается образование поляризации реликтового излучения во время стандартной рекомбинации. Вычисляются амплитуды мультипольных гармоник для различных показателей спектра (n=1, и 1,5) и различных видов возмущений: скалярных возмущений и гравитационных волн.

1. Мультипольные коэффициенты

Интенсивность и состояние поляризации электромагнитного поля характеризуются тремя независимыми параметрами. В наших обозна-