- 5. Маренкин С. Ф., Пищиков Д. И., Чукичев М. В.//Там же. 1991. 27, № 3. C. 677.
- 6. Turner W. J., Fischler A. S., Reese W. E.//Phys. Rev. 1961. 121, N 3.
- 7. Морозова В. А., Пищиков Д. И., Лосева С. М. и др.//ФТП. 1991. 25, № 9. C. 1664.

- 8. Котосонов Н. В., Артюхов С. П., Зюбина Т. А.//Изв. АН СССР. Неорганические материалы. 1969. 5, № 12. С. 2207.
 9. Угай Я. А., Зюбина Т. А.//Там же. 1966. 2, № 1. С. 9.
 10. Physics of Thin Films/Ed. G. Hass. V. 1. N. Y.; L. 1963 (Русский перевод: Физика тонких пленок/Ред. Г. Хасс. Т. 1. М., 1967).

Поступила в редакцию 25.12.95

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1996. № 4

УДК 538.22.539.28

РАСПРЕДЕЛЕНИЕ СВЕРХТОНКИХ ПОЛЕЙ В ПОЛУМЕТАЛЛИЧЕСКИХ ΦΕΡΡΟΜΑΓΗΕΤИΚΑΧ NiMnSb_{1-x}Si_x

В. В. Суриков, П. Н. Стеценко, С. Д. Антипов, Г. Е. Горюнов, А. В. Гармашов, А. Л. Колумбаев

(кафедра общей физики для естественных факультетов)

Методом ядерного спинового эха измерено распределение сверхтонких полей на ядрах 55 Mn, 121 Sb и 123 Sb в новых полуметаллических ферромагнетиках NiMnSb_{1-x}Si_x. Показано, что локальные магнитные моменты определяются прежде всего локальным атомным окружением данного иона, а не общим составом образца и его усредненными макроскопическими характеристиками.

В 1983 г. де Гроотом открыт новый перспективный класс магнитных материалов — полуметаллические ферромагнетики [1], уникальная зонная структура которых весьма привлекает исследователей. Однако информации о синтезе новых полуметаллических материалов и их физических свойствах практически нет. Это естественно, потому что необычная зонная структура материалов требует особой тщательности при приготовлении. Цель данной работы — синтез и комплексное исследование новых полуметаллических ферромагнетиков Ni $MnSb_{1-x}Si_x$ различными методами. Особое внимание при этом уделено изучению распределения сверхтонких полей на различных ядрах с помощью метода ядерного спинового эха.

Слитки выплавлялись в дуговой печи в атмосфере аргона. Затем они подвергались упорядочивающему отжигу в капсулах из нержавеющей стали, запаянных электронно-лучевой сваркой в вакууме 10^{-3} мм рт. ст. Применялся длительный отжиг, так как это существенно для получения хороших образцов: 11 суток образцы отжигались при 790°C


и далее еще 10 суток при 810°C.

Состав образцов и степень их однофазности определялись с помощью рентгеновского микроанализатора JEOL-6000 и сканирующего рентгеновского микроанализатора Hitachi S-800. Фазовый анализ и определение параметра решетки проводились с помощью дифрактометра Дрон-4.03. Параметр решетки при увеличении концентрации кремния уменьшается от 5,940 Å (x=0) до 5,917 Å (x=0,4).

Рентгенографические исследования показали, что было получено несколько однофазных образцов при концентрациях $3\div 4$ ат. %, а если пользоваться критерием практической однофазности,

используемым де Гроотом в работе [2] (количество второй фазы порядка 5%), то область практической однофазности распространяется до 8÷10 ат.% Si. Именно в этом диапазоне концентраций нами и были

проведены дальнейшие исследования.

Спектры ядерного сийнового эха при $77~{\rm K.}~I_{sc}$ — относительная интенсивность спинового эха. Состав образцов приведен в таблице и в тексте

Распределение сверхтонких полей на ядрах ⁵⁵Mn, ¹²¹Sb и ¹²³Sb измерено методом ядерного спинового эха при температуре 77 К. Спектры спинового эха приведены на рисунке. Составы образцов указаны в таблице.

Отметим, что спектр образца Ni_{32,1}Mn_{35,9}Sb_{31,2}Si_{0,8} (№ 7 на рисунке) существенно отличается от других приведенных спектров. Хорошо видно, насколько сильно влияет на распределение сверхтонких полей отклонение всего на 2,6 ат.% от стехиометрического состава по марганцу. Это может быть иллюстрацией того, как тщательно необходимо работать с полуметаллическими ферромагнетиками.

Стабильное положение главного марганцевого пика на частоте 297,2 МГц указывает на неизменность локального магнитного момента Мп в упорядоченной структуре С1_в.

Изменения в спектрах проявляются в смещении резонан-

сов, обусловленных 121 Sb и 123 Sb, в сторону низких частот. Широкие пики в диапазоне $160 \div 170 \ M\Gamma$ ц соответствуют резонансам на ядрах 123 Sb.

№ образца	Состав образцов	Параметр решетки, Å	μοο (μΒ)
1	$\begin{array}{c} Ni_{32,9}Mn_{33,5}Sb_{33,6} \\ Ni_{32,5}Mn_{33,5}Sb_{32,1}Si_{1,9} \\ Ni_{32,9}Mn_{34,0}Sb_{30}Si_{3,1} \\ Ni_{32,3}Mn_{34,5}Sb_{26,9}Si_{6,9} \\ Ni_{32,3}Mn_{34,6}Sb_{23,9}Si_{8,1} \\ Ni_{32,8}Mn_{34,4}Sb_{23,6}Si_{9,5} \end{array}$	5,940	3,6±0,1
2		5,938	3,7
3		5,929	3,5
4		5,931	3,1
5		5,929	3,1
6		5,921	2,9

Резонансы на ядрах ¹²¹Sb находятся в высокочастотной части спектра (выше 300 МГц), налагаясь, возможно, на некоторые резонансы, обусловленные ядрами марганца. С ростом концентрации кремния и низкочастотный пик, и центр тяжести высокочастотной части спектра смещаются в сторону меныших частот. Это не оставляет никаких сомнений в уменьшении полей на ядрах сурьмы, что может быть обусловлено постепенным увеличением в системе количества атомов марганца с уменьшенными магнитными моментами. На это указывает, например, постепенное уширение марганцевого пика в сторону низких частот при

увеличении концентрации кремния. Здесь же появляется и небольшой новый пик на частоте 271 МГц. Увеличение доли атомов марганца с уменьшенными магнитными моментами можно объяснить отклонением локального окружения ионов Мп от упорядоченного стехиометрического окружения, соответствующего структуре $C1_b$. Как показывают наши исследования, аналогично ведут себя сверхтонкие поля и локальные магнитные моменты и в системе NiMnSb_{1-x}Sn_x.

Для проверки выводов об изменениях величин магнитных моментов в системе $NiMnSb_{1-x}Si_x$ были проведены измерения магнитных моментов μ_{00} , приходящихся на формульную единицу каждого сплава. Измерения намагниченности исследуемых образцов были выполнены при комнатной температуре в магнитных полях до 15 кЭ на автоматизированном программно-управляемом вибрационном магнитометре, разработанном в проблемной лаборатории магнетизма физического факультета МГУ. Результаты измерений приводятся в таблице.

Как видно из таблицы, средний магнитный момент данных сплавов уменьшается при увеличении концентрации кремния. Можно заключить, что локальные магнитные моменты в полуметаллических ферромагнетиках $NiMnSb_{1-x}Si_x$ зависят в основном от локального атомного окружения данного иона, а не от общего состава образца и его усред-

ненных макроскопических характеристик.

Работа выполнена при финансовой поддержке Международного научного фонда (грант JHT-100).

ЛИТЕРАТУРА

 De Groot R. A., Mueller F. M., Engen P. G. van, Buschow K. H. J.//Phys. Rev. Lett. 1983, 50. P. 2024.

 De Groot R. A., Engen P. G. van, Engelen P. P. J. van, Buschow K. H. J.// //J. Magn. and Magn. Mater. 1990. 86. P. 326.

Поступила в редакцию 27.12.95

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА. АСТРОНОМИЯ. 1996, № 4

УДК 538.955

О ВОЗМОЖНОСТИ НАБЛЮДЕНИЯ ИНДУЦИРОВАННОГО СУПЕРПАРАМАГНЕТИЗМА

В. И. Николаев, Т. А. Бушина, Ким Ен Чан

(кафедра общей физики)

Обсуждается вопрос о возможности наблюдения суперпарамагнетизма ультрамалых частиц при температурах T выше их точки Кюри T_c («индуцированный суперпарамагнетизм»). Анализ условий опыта по наблюдению этого явления проведен в рамках модели Ланжевена, дополненной теорией молекулярного поля. Как показывают оценочные расчеты, для наблюдения «индуцированного суперпарамагнетизма» требуются сравнительно легко достижимые поля.

В последние годы большое внимание уделяется исследованию свойств суперпарамагнетиков $[1,\,2]$. До сих пор, однако, остается малоизученным вопрос о магнитных свойствах ультрамалых частиц при температурах выше их точки Кюри. Между тем понимание механизмов формирования особых магнитных свойств ультрамалых частиц при температурах T, близких к точке Кюри T_c , может способствовать дальнейшим изысканиям различных практических применений магнитоупорядоченных систем в высокодисперсном состоянии.