ФИЗИКА ТВЕРДОГО ТЕЛА

УДҚ 538.22:539.28

СВЕРХТОНКИЕ ПОЛЯ И МАГНИТНЫЕ МОМЕНТЫ В СПЛАВАХ ГЕЙСЛЕРА NimnSb_{1-x}Sn_x

П. Н. Стеценко, В. В. Суриков, С. Д. Антипов, Г. Е. Горюнов, П. В. Чеповский (кафедра общей физики для естественных факультетов)

Исследовалось влияние смещения уровня Ферми при замещении сурьмы оловом в полуметаллических ферромагнетиках NiMnSb_{1-x}Sn_x на сверхтонкие поля и магнитные моменты. Сделан вывод, что решающее влияние на величину сверхтонких полей и локальных магнитных моментов оказывают не обобщенные физические характеристики образцов (положение уровня Ферми, параметр решетки, температура Кюри), а конкретное атомное окружение данного иона.

Сплавы Гейслера NiMnSb_{1-x}Sn_x относятся к классу новых магнитных материалов — полуметаллическим ферромагнетикам, необычность электронной структуры которых в ряде случаев приводит к уникальным физическим свойствам. В работе [1] показано, что замещение сурьмы оловом в сплавах NiMnSb_{1-x}Sn_x вплоть до концентрации олова x ==0,7 сопровождается уменьшением величины уровня Ферми, а при x >>0,7 сплавы не синтезируются. Влияние смещения уровня Ферми на сверхтонкие поля в полуметаллических ферромагнетиках ранее не изучалось ни теоретически, ни экспериментально. Цель данной работы получение экспериментальных данных о корреляции между смещением уровня Ферми и изменением величины сверхтонких полей на различных ядрах в полуметаллических ферромагнетиках.

Параметры решетки синтезированных нами сплавов NiMnSb_{1-x}Sn_x (x<0,7) хорошо согласуются с литературными данными [1]. Величина параметра решетки линейно увеличивается с ростом концентрации олова.

Распределение сверхтонких полей на ядрах ⁵⁵Mn, ¹²¹Sb и ¹²³Sb измерялось методом ядерного спинового эха при температуре 77 К. Типичные спектры ядерного спинового эха, приведенные на рисунке, очень сложны, и полная идентификация всех резонансных пиков пока не может быть проведена из-за явного наложения резонансов от ядер различных типов и с различными локальными взаимодействиями. Но некоторые важные особенности поведения спектральных линий позволяют сказать следующее.

На всех спектрах присутствует пик на частоте (298 ± 1) МГц, соответствующий атомам марганца в полностью упорядоченной структуре $C1_b$. Строгое частотное постоянство этого пика свидетельствует как о строгом постоянстве собственного локального магнитного момента ионов Мп, так и о неизменности магнитного состояния всех окружающих ионов в ближайших координационных сферах. Это весьма важный и новый результат. Действительно, как показывают зонные расчеты 11], замещение сурьмы оловом должно приводить к понижению магнитного момента в узлах, занятых Ni и Mn: в NiMnSb $\mu_{Mn}=3,73 \mu_B, \mu_{Ni}=$ =0,31 μ_B , а в NiMnSn (гипотетическом) $\mu_{Mn}=3,48 \mu_B, \mu_{Ni}=0,1 \mu_B$.

Однако стабильное положение главного пика говорит о том, что магнитный момент соответствующих атомов Мп не изменяется. Если бы он уменьшался, то к середине разреза (x=0,5) главный марганце-

вый пик сместился бы в сторону низких частот более чем на 10 МГц (при типичных значениях константы сверхтонкого взаимодействия для Мп в сплавах Гейслера). При высокой чувствительности метода ядерного спинового эха такое смещение очень легко увидеть.

Более того, из стабильности главного пика следует, что нет никакого уменьшения и локальных магнитных моментов ионов никеля. Действительно, в первой координационной сфере Мп находится 4 атома никеля. Влияние магнитного состояния первой координационной сферы на сверхтонкие поля весьма существенно, так что, если бы все 4 атома никеля уменьшали свой магнитный момент, то сверхтонкое поле на ядрах Мп обязательно уменьшалось бы на заметную величину.

Не следует, однако, считать, что результаты работы [1] неверны. При внимательном изучении других деталей спектров спинового эха, а не только положения главного пика, можно найти под-

Слектры ядерного опинового эха при 77 К. Ise — относительная интенсивность спинового эха. Составы образцов приведены в таблице

[1] тверждение полученной в тенденции уменьшения среднего Мп олова. Здесь необходимо момента с ростом концентрации обратить характер поведения спада интенсивности внимание на эха от максимума главного марганцевого пика (298 спинового сторону более низких Хорошо видно, что вся МГш) частот. В часть спектра непрерывно «приподнимается» с увеэта левая личением концентрации олова, т. е. центр тяжести спектров сме-щается в сторону низких частот. Такое смещение указывает на уменьшение среднего момента атомов марганца, обусловленное усилением атомного разупорядочивания в сплавах. Об этом свидетельствует четкая тенденция уширения спектров с ростом концентрации олова.

Уменьшение среднего магнитного момента данных сплавов подтверждается и проведенными нами измерениями магнитных моментов

μ₀₀, приходящихся на формульную единицу каждого сплава системы NiMnSb_{1-x}Sn_x. Измерения намагниченности исследуемых образцов были выполнены на автоматизированном программноуправляемом вибрационном магнитометре, раз-

		5 T. T. S. T. S.	
№ образца	Состав образцов	Параметр решетки, А	μ ₀₀ , (μ _в)
1 2 3 4 5 6	Ni ₂₂ Mn _{34,2} Sb _{33,8} Ni _{32,1} Mn _{33,4} Sb _{31,2} Sn _{3,3} Ni ₃₂ Mn _{33,7} Sb _{27,4} Sn _{6,9} Ni _{33,5} Mn _{34,1} Sb ₂₃ Sn _{9,4} Ni _{32,2} Mn _{34,7} Sb _{20,8} Sn _{12,3} Ni _{33,7} Mn _{33,4} Sb _{17,7} Sn _{15,2}	5,945 5,942 5,947 5,961 5,972 5,980	3,8±0,1 3,9 3,8 3,65 3,6 3,6 3,2

85

работанном в проблемной лаборатории магнетизма физического факультета МГУ. Результаты измерений приведены в таблице.

Можно заключить, что локальные магнитные моменты в системе $NiMnSb_{1-x}Sn_x$ зависят прежде всего от локального атомного окружения, а не от положения уровня Ферми.

Работа выполнена при финансовой поддержке Международного научного фонда (грант JHT-100).

ЛИТЕРАТУРА

1. De Groot R. A., Engen P. G. van, Engelen P. P. J. van, Buschow K. H. J.//J. Magn. and Magn. Mater. 1990. 86. P. 326.

Поступила в редакцию 27.12.95

ВЕСТН. МОСК. УН-ТА. СЕР. 3, ФИЗИКА, АСТРОНОМИЯ. 1996. № 5

УДК 621.382

СЕРИЯ ЛИНИЙ СВОБОДНОГО ЭКСИТОНА В СПЕКТРАХ ПРОПУСКАНИЯ ДИАРСЕНИДА ЦИНКА

В. А. Морозова, Т. В. Семененя, С. Ф. Маренкин, О. Г. Кошелев, М. В. Чукичев (кафедра физики полупроводников)

В диарсениде цинка обнаружена структура, соответствующая состояниям свободного экситона с n=1, 2, 3. Состояние с n=3 наблюдается до температуры 10 К, с n=2 — до 110 К, а с n=1 — до 300 К. Определена энергия связи экситона (17,5 мэВ).

Серии экситонных уровней обычно наблюдаются в относительно широкозонных полупроводниках с $\varepsilon_g \gg 1.5$ эВ [1]. Для анизотропных полупроводниковых соединений группы, А¹¹В^v такие серии были обнаружены в спектрах оптического пропускания (ОП) и отражения соединения ZnP₂ ($\epsilon_{g} \gg 1,6$ эВ) [2, 3]. Для более узкозонного полупроводни- $\kappa a - ZnAs_2$ ($\epsilon_{\sigma} \approx 1$ эВ), кристаллизующегося в моноклинной сингонии, в спектрах отражения при $\mathbf{E}||\mathbf{c}|||\mathbf{c}||\mathbf{c}||\mathbf{c}||\mathbf{c}||\mathbf{c}||\mathbf{c}||\mathbf{c}||\mathbf{c}||\mathbf{c}||\mathbf{c}||\mathbf{c}||\mathbf$ электрической компоненты электромагнитного поля световой волны. с ось кристалла) при 4.2 К также наблюдалась структура, соответствующая состояниям свободного экситона с n=1,2, что позволило оценить энергию связи экситона: G=12 мэВ [3]. В спектрах отражения состояние с *n*=2 было слабо выражено и наблюдалось только при 4,2 К. В спектрах ОП экситонные пики с *n*=1,2 регистрировались лишь при 4.2 К [3], что обусловлено, по-видимому, высоким уровнем примесного поглощения (~ 2 см⁻¹). На более совершенных монокристаллах состояние с n=1 наблюдалось в спектрах ОП (E \perp с) в области 78—300 K [4].

Благодаря успехам, достигнутым в последнее время в технологии выращивания монокристаллов ZnAs₂ [5], уровень их примесного поглощения был снижен до 5 10⁻² см⁻¹ [4]. Настоящая работа посвящена исследованию спектров ОП таких монокристаллов ZnAs₂ с целью обнаружения серии уровней свободного экситона.

Исследования проводились в области температур 5—300 К в поляризованном свете с использованием монохроматора ИКС-21. Контрольные измерения при 78 и 300 К были проведены на спектрографе IFS—113v (Bruker) со спектральным разрешением не менее 1 см⁻¹,