ТЕОРЕТИЧЕСКАЯ И МАТЕМАТИЧЕСКАЯ ФИЗИКА

УДК 536.758; 539.201

О НЕКОТОРЫХ ОБРАТНЫХ ЗАДАЧАХ ТЕХНОЛОГИИ ЦЕМЕНТАЦИИ

В. Б. Гласко, Ю. В. Гласко (кафедра математики)

Предложены и обоснованы корректные постановки задач об определении по косвенным данным параметров газовой атмосферы при цементации и об определении для того же процесса константы равновесия при взаимодействии атмосферы с поверхностью металла. Разработаны и реализованы в Си-программах алгоритмы их решения.

1. Развитая в фундаментальных работах А. Н. Тихонова теория регуляризации [1] открывает широкие возможности для корректной постановки обратных задач, в том числе тех, предметом которых является определение функциональных параметров, обеспечивающих заранее заданный результат — обратных задач типа управления [2].

В работе [3] был рассмотрен вариант математически корректной постановки одной из таких задач: об управлении науглероживанием стальных деталей в газовой печи с помощью выбора начального состояния ее квазиравновесной атмосферы. В настоящей статье в качестве управляющих факторов для аналогичного процесса приняты давления газов в равновесном состоянии атмосферы, что приводит к новым критериям выбора управления и раскрывает некоторые новые аспекты корректной постановки задачи.

Как отмечалось в [4, 5], для такого рода задач не всегда известны все физические параметры модели, и для определения последних могут быть поставлены в свою очередь обратные задачи типа интерпретации некоторых косвенных данных. В настоящей статье рассматривается одна из таких задач: об определении константы равновесия для взаимодействия атмосферы с поверхностью металла, где принципиальное значение имеет проблема единственности решения.

2. Будем считать атмосферу печи замкнутой средой постоянного объема при температуре T, содержащей газы H_2 , H_2O , CH_4 , CO, CO_2 , O_2 , которым соответствуют парциальные давления p_i (i=1-6). Приняв в качестве независимых параметров давления первых трех газов, равновесное состояние атмосферы будем описывать уравнениями

$$p_4 = K_1 p_2 p_3 / p_1^3; \ p_5 = (K_1^2 / K_2) p_2^2 p_3 / p_1^4; \ p_6 = (K_1^2 / K_3) (p_2^2 / p_1^2), \tag{1}$$

где $K_j = K_j(T)$ — константы равновесия трех независимых обратимых реакций между газами [3]. Эффект внедрения атомарного углерода С в металл описывается на основе реакции $2\text{CO} \rightleftharpoons \text{C} + \text{CO}_2$, и тогда система (1) дополняется условием $a_\text{C} = K^* p_4/p_5$, или, согласно (1),

$$a_C = K^* K_2 p_3 / p_1.$$
 (2)

Здесь $K^*(T)$ — константа равновесия указанной реакции; $a_{\rm C}$ — так называемая активность углерода [6] в металле, однозначно определяемая, согласно (2), равновесным полем давлений.

В качестве параметра, управляющего процессом диффузии углерода в металле, принимается обычно [7] его граничная концентрация

C, выражаемая либо в массовых процентах, либо в молярных долях ($\eta = 4,65 \cdot 10^{-2}C$). Как показано в [6], связь между a_C и η определяется при достаточно малых, исчерпывающих технические цели значениях η ($\eta = (0;0,2)$), уравнением

$$\psi(\eta) = \ln \left[\eta / (a_{\rm C}(1-5\eta)) \right] + b\eta / (1-\eta) = 0, \tag{3}$$

где b = b(T) — некоторая эмпирическая константа, положительная при

характерных температурах цементации.

Можно заметить, что $\psi'(\eta) = (\eta(1-5\eta))^{-1} + b(1-\eta)^{-2} > 0$, если $\eta \in (0;0,2)$; $\psi(0) = -\infty$, $\psi(0,2) = \infty$, и потому уравнение (3) имеет единственное решение на интервале (0,0,2). Таким образом, соотношения (1)-(3) однозначно определяют оператор A со значениями на указанном интервале, разрешающий уравнение (3) при заданной совокупности давлений \mathbf{p} .

Интересующая нас обратная задача предполагает, что величина углеродного потенциала $C = \hat{C}$ заранее определена так, чтобы распределение концентрации углерода по окончании процесса диффузии отвечало заданным условиям (например, из [8]). Соответственно определено значение $\hat{\eta}$. Требуется определить соответствующее этому η равновесное состояние атмосферы.

Такая задача может быть сформулирована в виде операторного-

уравнения

$$A\mathfrak{p} = \widehat{\mathfrak{q}} \,, \tag{4}$$

и она оказывается некорректной хотя бы по двум причинам: а) не для всякого η решение существует; б) если решение существует, то оно заведомо неединственно, поскольку значения p_1 — p_3 можно менять произвольно, не нарушая условий равновесия (1)—(2) и не меняя величины Ap.

Для устранения некорректности в указанном смысле выделим два основных параметра, соответствующих «управлению по водороду» при заданном уровне «влажности» атмосферы: $p_1 > 0$ и $\lambda = p_2/p_1 > 0$.

В качестве дополнительной информации о равновесном состоянии

атмосферы введем условие

$$\sum_{i=1}^{6} p_i = \hat{p}, \ p_i > 0, \tag{5}$$

где \hat{p} — величина давления во внешней по отношению к печи среде

(например, $\hat{p}=1$ атм). Оказывается верной следующая

 $\hat{\Gamma}$ е о р е м а 1. При заданных константах равновесия и давлениях р существует единственное значение $\hat{\lambda} > 0$, такое, что для любого $\eta \in (0,0,2)$ и при любом фиксированном значении $\lambda \in (0,\hat{\lambda})$ уравнение (4) при условии (5) имеет решение, и притом единственное.

Действительно, существование хотя бы одного решения (независимо от значения λ) следует из того, что $\eta \in (0,0,2)$ принадлежит области значений оператора Ap. Заметим теперь, что при таком η из (3) однозначно определяется a_c , а тогда из (2) следует связь:

$$p_3 = q p_1^2, (6)$$

где $q=a_{\rm C}/K^*K_2$. Вследствие соотношений (1) и (6) уравнение (5) приводит к выражению

$$p_1 = [((1+\lambda)^2 + 4q(\varphi(\lambda))^{1/2} - (1+\lambda)]/(2q).$$
 (7)

Здесь $\varphi(\lambda) = \hat{p} - \lambda K_1 q - \lambda^2 K_1 \cdot [(q/K_2) + (1/K_3)]$ — квадратный трехчлен относительно λ , имеющий при любом \hat{p} единственный положительный корень, который обозначим $\hat{\lambda}$.

Для любого $\lambda \in (0, \hat{\lambda})$, и только в этом случае, $\phi(\lambda) > 0$ и соответ-

ственно p_1 и λ положительны. Теорема доказана.

Проведенный анализ содержит алгоритм решения задачи: поскольку $\eta=4,65\cdot 10^{-2}\,C$, а значит, известна величина q, то, задавшись уровнем влажности ($\lambda \in (0,\widehat{\lambda})$), находим p_1 из (7), $p_2=\lambda p_1$, а затем остальные давления из (6), (1). Соответствующие операции обладают свойством устойчивости, поскольку, как нетрудно убедиться (см. (3), (6), (7)), величина $\partial p_1/\partial C$ равномерно ограничена на любом сегменте $[\lambda_1,\lambda_2]\subset (0,\widehat{\lambda})$.

Заметим, что для рассматриваемой обратной задачи выбор параметра λ выполняет функцию регуляризации по Тихонову, поскольку производная $\partial p_1/\partial C$ не является равномерно ограниченной на $(0,\widehat{\lambda})$,

где она может оказаться сколь угодно большой (рис. 1).

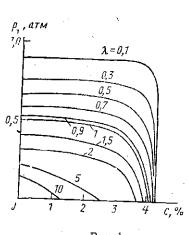
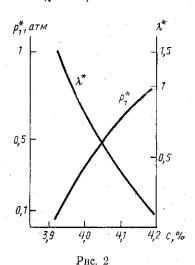


Рис. 1



С другой стороны, выбор λ может оказаться существенным для решения «прямой» задачи об управлении процессом цементации: неприемлем тот случай, когда пренебрежимо малым погрешностям управляющих давлений соответствуют вариации C, не слишком большие, но такие, что результаты цементации оказываются существенно различными [8] с точки зрения практики.

Такая ситуация возможна при достаточно малых λ («сухая» атмосфера) в области, где $\partial p_1/\partial C \sim 0$ (см. рис. 1). Регуляризация управления может быть основана на том, что на каждой кривой при таких λ существует единственная точка, где монотонно убывающая функция C: $\partial p_1/\partial C$ равна —1. Значение пары (λ^* , p_1^*), соответствующее этой точке при заданном C, и можно принять в качестве управляющего. Процедура такого выбора алгоритмизируема. Действительно, из (3), (6), (7) получается явное выражение для производной, а для уравнения $\chi(\lambda, C) = \partial p_1/\partial C + 1 = 0$ с учетом того, что $\chi(0, C) > 0$ при любом C, имеется следующая альтернатива: а) если $\chi(\lambda, C) < 0$, то оно имеет единственное решение вследствие монотонности χ , и в этом случае $\lambda^* = \lambda^* (C)$ выбирается как его корень; б) если $\chi(\lambda, C) > 0$, решений нет,

но одновременно отпадает необходимость в регуляризации и λ может быть задано по технологическим условиям.

Поведение функций $\lambda^*(C)$, $p^*(C)$ в области «критических» значе-

ний С представлено на рис. 2.

3. Рассчитывая значения углеродного потенциала по заданным равновесным давлениям [3], можно убедиться, что его величина достаточно критически зависит от константы равновесия K^* : погрешность определения C может быть вчетверо больше погрешности вычисления $\lg K^*$. Эта величина как функция T определяется на практике некоторой полуэмпирической формулой [7], а коэффициенты последней методом наименьших квадратов. Связанный с их определением физический эксперимент несет погрешность большую, чем при определении констант равновесия K_i , для реакций между газовыми компонентами.

Таким образом, оператор прямого отображения (4) может содержать заметную погрешность, соответствующую неопределенности математической модели (1)—(3) относительно K^* . В такой ситуации может быть поставлена задача о предварительном определении K^* на основе косвенной информации о поле концентрации в металле по окончании процесса $(t=\hat{t})$.

В этой обратной задаче входной информацией может быть единственное числовое значение: концентрация углерода на поверхности металла при $t=\hat{t}:\tilde{u}(0,\hat{t})$. Эта величина может быть измерена с достаточно малой относительной погрешностью δ :

$$|(\widetilde{u}(0, \widehat{t}) - u(0, \widehat{t}))/\widetilde{u}(0, \widehat{t})| \leq \delta.$$

Сопоставляемое с $\tilde{u}(0,\hat{t})$ расчетное значение концентрации $u[K^*,0,\hat{t}]$ при любом фиксированном $K^*{=}K^*(T)$ определяется как решение прямой задачи: $p_0{\Rightarrow}u$ при некотором начальном состоянии атмосферы p_0 . В работе [3] предложен экономичный алгоритм расчета по заданному $p_0{=}\{p_{i0}\}$, $i{=}1,2,...$, 6, равновесного состояния атмосферы p, после чего величина углеродного потенциала C однозначно определяется на основе соотношений (2), (3). Обозначим этот алгоритм B_1 , и пусть B_2 — алгоритм вычисления концентрации $u((0,\hat{t}))$ из решения каким-либо достаточно точным методом нелинейной задачи диффузии:

$$\frac{\partial (D(u) \partial u/\partial x)}{\partial x} = \frac{\partial u}{\partial t}, \quad x \in (0, l), \quad t \in (0, \hat{t}), \quad u|_{t=0} = u_0, \\
D(u) \frac{\partial u}{\partial x}|_{x=0} = \beta (u|_{x=0} - C), \quad \frac{\partial u}{\partial x}|_{x=l} = 0,$$
(8)

где D(u) и β — заданные коэффициенты диффузии и массообмена [13], причем β =const, D(u) > 0 и существует неотрицательная производная

 $\overline{D}'(u)$.

Очевидно, суперпозиция указанных операторов $B=B_2B_1$ при фиксированном p_0 является функцией вещественной переменной K^* : $u[K^*,0,\hat{t}]=B(K^*)$. Этот оператор имеет то преимущество, что он содержит лишь погрешность вычислений, которая может быть сделана пренебрежимо малой, в отличие от неустранимой погрешности эксперимента.

Таким образом, значение K^* определяется операторным уравнением

$$f(\xi) = B(\xi) - u = 0$$
 (9)

с алгоритмически определенной левой частью. То, что это обычное конечное уравнение вида $f(\xi) = 0$, определенное на некотором множе-

стве значений вещественной переменной, не снимает вопросов корректности постановки задачи (9), которые и рассмотрим.

Отметим, что известные из литературы [6, 7] эмпирические выражения для K^* позволяют ограничить сегмент $\Delta_1 = [K_1^*, K_2^*]$, к которому принадлежит константа равновесия K^* .

Обозначим через D(t) множество отображений Δ_1 с помощью оператора B, зависящее от \hat{t} как от параметра.

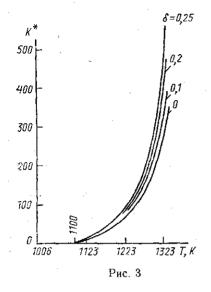
Теорема 2. Существует сегмент $\Delta_1^* \subset \Delta_1$ такой, что для любого $K^* \subseteq \Delta_1^*$ найдется \hat{t} и $u \in D(\hat{t})$, при которых решение уравнения (9) существует и единственно.

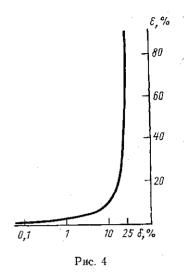
Существование решения при любом \hat{t} следует из определения u. Для установления единственности достаточно убедиться в том, что $B\left(oldsymbol{\xi}
ight) —$ непрерывная и строго монотонная функция. Непрерывность ее как сложной функции ξ следует, во-первых, из непрерывности $B_{1}(\xi)$ по определению алгоритма (см. [1, 3]); во-вторых, из непрерывности B_2 относительно параметра \hat{C} , согласно общим свойствам квазилинейных уравнений параболического типа [9]. Как видно из (8), существует $\lim u(0, t) = C$, где C оказывается решением соответствующей стационарной задачи (что отвечает и физике процесса). Поскольку u(0,t) — монотонно возрастающая функция, большим значениям С при достаточно больших t соответствуют большие значения u(0,t) по свойству пределов [10]. Следовательно, $B_2(C)$ — монотонно возрастающая функция. Убедимся в том, что аналогичным свойством обладает $B_1(\xi)$. Согласно (3), $\partial \eta/\partial \xi = -(\partial \psi/\partial \xi)/(\partial \psi/\partial \eta)$. Как показано $\partial \psi / \partial \eta > 0$; $\partial \psi / \partial \xi = (\partial \psi / \partial a_C) (\partial a_C / \partial \xi) = (-1/a_C) \partial a_C / \partial \xi < 0$, τακ κακ $\partial a_C / \partial \xi > 0$ в соответствии с (2). Поэтому $\partial \eta/\partial \xi > 0$. Но по определению η , $sign \partial C/\partial \xi = sign \partial \eta/\partial \xi$, так что C монотонно возрастает с ростом ξ , в чем и требовалось убедиться. Таким образом, $B(\xi)$ — монотонно возрастающая, непрерывная функция, и, значит, сегмент Δ_{i} в условиях теоремы оказывается «вилкой», что и доказывает единственность решения уравнения (8).

Устойчивость решения — непрерывная его зависимость от величины u — прямое следствие непрерывности оператора $B(\xi)$ [10] на Δ_1 и отличия от нуля (положительности) его производной.

Для оценки модуля непрерывности решения задачи нами был проведен математический эксперимент. В этом эксперименте для набора значений K_s , соответствующих различным $T=T_s$, s=1,2,3, $T_s \!\! \in \!\! [1123 \, \mathrm{K}, \, 1323 \, \mathrm{K}]$, взятым из [7], значения $u_s(0,\hat{t})$ при $\hat{t}=10$ ч были рассчитаны с использованием асимптотических формул [11], аппроксимирующих решение (8). Погрешность входных данных имитировалась формулой $\tilde{u}_s = (1+\delta\omega)u_s$, где ω — случайная величина с равномерным распределением на сегменте [—1, 1]. Уравнение (9) решалось с помощью метода вилки на сегменте $[K_1^* - v, K_2^* + v]$ при малом v. При этом значения $B(\xi)$ вычислялись также с использованием асимптотических представлений [11].

Полученные для различных δ значения K_s^* представлены на рис. 3. Оценкой относительной погрешности результата в проведенном эксперименте, где точное значение искомой величины известно, для заданного диапазона температур может служить величина ε =max | (K_s^* — K_s^*)/ K_s^* |. Ее поведение в зависимости от δ представлено на рис. 4. Можно заметить, что обычной для практических задач погрешности результата около 5% соответствует погрешность измерения температуры $\delta \sim 5\%$, что вполне достижимо.





Авторы выражают благодарность А. Г. Свещникову и В. М. Репину за внимание к работе.

ЛИТЕРАТУРА

- 1. Тихонов А. Н., Арсенин В. Я. Методы решения некорректных задач. М.,
- 2. Тихонов А. Н., Кальнер В. Д., Гласко В. Б. Математическое моделирование технологических процессов и метод обратных задач в машиностроении. M., 1990.
- 3. Гласко В. Б., Гласко Ю. В., Осипенко М. А.//Вестн. Моск. ун-та. Физ. Астрон. 1995. № 2. С. 21 (Moscow University Phys. Bull. 1995. N 2. Р. 18).

 -4. Тихонов А. Н., Кулик Н. И., Шкляров И. Н., Гласко В. Б.//Инж.-физ. журн. 1980. 39, № 1. С. 5.
- Бласко В. Б., Щепетилов А. В.//Вестн. Моск. ун-та. Физ. Астрон. 1994.
 № 1. С. 3. (Moscow University Phys. Bull. 1994. N 1. P. 1).
- 6. Могутнов Б. М., Томилин И. А., Шварцман Л. А. Термодинамика железоуглеродистых сплавов. М., 1972.
- 7. Леонидова М. Н., Шварцман Л. А., Шульц Л. А. Физико-химические основы взаимодействия металлов с контролируемыми атмосферами. М., 1980.
- 8. Кальнер В. Д., Юрасов С. А., Гласко В. Б., Кулик Н. И.//Металловедение и термич. обработка металлов. 1986. № 1. С. 7.
- 9. Ладыженская О. А., Солонников В. А., Уральцева Н. Н. Линейное и квазилинейное уравнения параболического типа. М., 1967.
- 10. Ильин В. А., Позняк Э. Г. Основы математического анализа. Т. 1. М., 1965. 11. Гласко В. Б., Гласко Ю. В., Клюев К. В., Осипенко М. А.//ЖВМ и MФ. 1994. **39**, № 1. C. 156.

Поступила в редакцию 02.02.96