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ON INTERPRETATION OF SPIN EFFECTS 
IN CERENKOV RADIATION 

l.M. Ternov' and A. V. Borisov 

Cerenkov radiation power depends on the correlation between electron polar­
ization and photon helicity. This correlation is interpreted in the present paper 
as an interference between radiation amplitudes of the electron charge and the 
electron magnetic moment. 

Polarization effects in quantum theory of Cerenkov radiation (CR) [1, 2] (see also [3]) were studied 
in papers [4-6]. Their results were generalized in [7], where the total power of CR for arbitrary electron 
and photon polarizations was obtained. A characteristic polarization effect is the correlation between the 
electron spin and the photon circular polarization (helicity). In a particular case of pure polarization states, 
the power distribution of CR over the frequency w and the azimuth angle <p (in the plane perpendicular to 
the electron momentum p) has the form [7] 
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where the subscript i = l, t refers to the electron polarization states, longitudinal (l) or transverse (t) with 
respect to p; the corresponding functions are as follows: 
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Here the angle Oo between the photon momentum lik and that of the electron p is determined by the 
conservation laws [3] 

1[ 1(2 '""] cosOo = - 1 + - n - 1)- , 
nv 2 E 

(4) 

v = p/E is the velocity of an electron with energy E = .jm2 + p 2 , p = IPI, n = n(w) is the refraction index 
of the medium. In Eq. (1) the electron spin number ( = ±1, the photon helicity A= ±1. (Here the system 
of units is used with c = 1, a= e2 /Ii~ 1/137.) 

Note that the result (2) for arbitrary electron polarization was for the first time obtained in [5]. The 
azimuth asymmetry (see (3)) of power of the circular polarized radiation emitted by a transversely polarized 
electron [7] is due to the fact that there exists a preferred direction of the electron polarization vector ( 
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( ( _!_ p). We emphasize that in (7] a general case of an electron and a photon, both partially polarized, was 
also considered. 

In the present paper an interpretation of a spin term ...... (>. in the power of CR (1) is proposed which 
means that it is due to a contribution of interference of the radiation amplitudes of the charge and the 
magnetic moment of an electron. Restricting ourselves by terms of the first order in the Planck constant h, 
we will show that the result mentioned also follows from the description of a point-like charged particle with 
an intrinsic magnetic moment equal to the Bohr magneton, in terms of classical electrodynamics. 

We start from the general formula for the spectral-angular distribution of CR power (7] (in what follows 
we put c =Ii.= 1) 

dW e
2 

nw
2 

'( , JI •12 dwdfl=81r u'u£ +w-£ o.i;e ' (5) 

where dfl is the element of a solid angle in the direction k (lkl = nw), 
photon, o: Ji are the matrix elements of the Dirac matrices, 

e is the polarization vector of a 

(6) 

Here u, ( s = i, /) are the bispinors of the initial and final electron states whose energy and momentum are 
related by the conservation law: c' = c - w, p' = p - k. 

Let us consider a reduced radiation amplitude 

R e • = -<XJie 
2£ 

(7) 

and separate in it the contributions from the charge and the magnetic moment of an electron using the 
Gordon identity (see e.g. [8]) which is valid for arbitrary positive-frequency solutions of the Dirac equation 
u(p) and u(p') 

1 
u(p'h"u(p) = -u(p')[(p' + p)" + iu""(p' - P)v]u(p), 

2m 
(8) 

where u'w = (i/2)(-y'',1'"] and a pseudo-Euclidean metric with the signature(+ - --) is used. The first 
term in the right-hand side of (8) refers to the charge, and the second one to the spin magnetic moment. 

Using (6), (8), and the condition ek = 0, we represent amplitude (7) in the form 

R = !....e•u1 [~ + _£_(iwa + k x E] u;. 
2£ m 2m 

(9) 

To make a quasi-classical interpretation of (9) we neglect the electron recoil in the process of photon 
radiation, putting UJ ::=: Ui. We express the bispinor u, in terms of a two-component spinor w, which 
determines the polarization state and is normalized according to the condition wtw; = 1, as follows (9]: 

( 
W; ) u;=../Ei ( I l , up£+ wa 

(10) 

where £+ = £ + m. With regard to (10) we find 

u;u; = 2m, u;au; = -2i£( xv, u;Eu; = 2£((- (1-')'-1 )((1)]. (11) 

Here ( = wt uw; is the vector of the initial electron polarization (in the case of a pure state under 
consideration 1(1 = 1); l = p/p, the Lorentz factor 1' = £/m = (1 - v2 )-112 • In (10) and (11) the 
standard representation of Dirac matrices (9] was used. 

We remark that ( is the quantum average of the spin operator in the rest frame 0 (see e.g. (10]) 

(12) 

where 1'5 = -i')'0 ')'1')'2 ')'3 • We emphasize that the operator 0 and the wave function V'i refer to the laboratory 
system of reference where the electron momentum is equal to p. 
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Determine the vector of the electron magnetic moment in the rest frame (a mean value of the 
operator -µBO) 

(13) 

where µ8 = -en/2m is the Bohr magneton (the electron charge e < 0). Then in the laboratory frame, the 
electron moving with velocity v = p/< =vi, as is known, (see e.g. [11], p. 397), has the magnetic moment 

(14) 

and acquires the electric dipole moment 
d =v x µ 0 • (15) 

Note that in the rest frame do= 0 due to GP-invariance of quantum electrodynamics [9]. 
In the approximation used, we assume in (9) that UJ = u; and upon employing (11), (13)-(15) the 

radiation amplitude is transformed to the form 

R = e(ve•) - i[µ(k x e•) + (de.)(kv)]. (16) 

Here it is considered that, in the classic limit, w = kv. The main formula (5) with due regard for formulas 
(7), (16), and<'~ Eis simplified 

dW nw2 
2 

dw df! = 2" J(w - vk)IRI . (17) 

In the framework of classical electrodynamics the same result (17) is obtained, where 

R= e•jkei(kv)t, jk = J d3xe-ikrj(t,r) (18) 

is the Fourier transform of the current density produced by a uniformly moving particle with charge e, the 
magnetic moment µ, and the electric moment d [11, 12], 

j(t, r) = evJ(r - vt) + '\1 x [µJ(r - vt)] + :t [dJ(r - vt)]. (19) 

Substituting Eq. (19) into (18) yields an expression for R (18) that coincides with (16) (see also [12]), which 
is in agreement with the correspondence principle for quantum matrix elements and the Fourier transforms 
of classical quantities [9]. 

Let us deal with quasi-classical derivation of formulas (2) and (3). We put 

p = pe,, n = k/ k = cos 8e, + sin 8( cos \Pey + sin \Pe,) 

and choose as vectors of linear polarization of a photon e(«) (a= 1, 2) the following ones [7]: 

(l) n x p . 
e = -

1 
--

1 
= sm \Pey - cos \Pe,, 

nxp 

e(2 ) = n x e( 1) =-sin Be, +cos8(cos\Pey +sin\Pe,). 

In the case of a longitudinally polarized electron ( = (e, it follows from (13)-(15) that 

d= 0. 

(20) 

(21) 

(22) 

Upon substituting (21) and (22) into (16), we arrive at the corresponding amplitudes for the photon 
radiation Rj"l 

(23) 

This means that the charge and the magnetic moment contribute to different components of linearly 
polarized radiation. We note that in [12] (see p. 159) a general conclusion was made that there is no 
interference between radiation by a charge and that by electromagnetic dipole moments. However, a 
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correction should be made that this is true only for linear components of radiation polarization when 
the vector e is real (see (16)). For circular polarization described by the complex vectors (see (21)) 

eA = ~(e(l) + i.>-e(2l), 

where A = ±1, the radiation amplitude follows from (23) and (24) 

(24) 

(25) 

Using (25), the contribution of interference between the charge and the magnetic moment to the CR power 
is found from (17) 

dur<e1•) 2 Ii vv 1 ev ,,.nw. 20 = -W •Ai.,.-- Sln UQ 1 dwd<p 41' p 
(26) 

where cos Bo= 1/(nv). Comparing (1) and (26) yields F1 = (linw/p) sin2 90 , which, in the first order of Ii, 
coincides with expression (2) (in (4), in the approximation adopted, the quantum correction is neglected). 

Consider now the case of transversely polarized electron, assuming, with consideration for (20), that 

( = (e,. (27) 

From (27) and (13)-(15), we find 

(28) 

Thus in this case (in contrast to (22)) together with the magnetic moment, an electric moment is induced in 
the laboratory frame of reference. From (16), (28), and (21) for amplitudes of linearly polarized radiation 
we obtain 

R)1l = i('Y-2µBkcos8sin<p, 

R)2l = -ev sin 8 + i(µB k cos 1p(l - v2 cos2 8). 
(29) 

With regard to (29) and the relation 

1 (1) . (2)) R1A = vf2(R1 - i.>-R1 , 

the corresponding interference contribution to CR power is found 

d"'(,µ) 2 Ii _,-..!."', _ e v , ,. ,.,,,., . 0 • 

dw d<p = --4"-w · "'-p-2- smuo sm <p, (30) 

which is in agreement with (3). 
We emphasize that the quasi-classical method considered can only be applied for the calculation of 

a correlation contribution proportional to (Ali. Other quantum effects of the order of Ii and Ii', that are 
contained in ( 1), cannot be dealt with completely by this method, as in deriving the main formula of 
method (16) the recoil in the radiation of a photon was neglected. 

In conclusion we note that the spin correlation mentioned above can be used in principle to determine 
polarization of the high energy electron beam as a result of measuring the degree of circular polarization 
of CR. However, since the effect is rather small (see (2) and (3)), the possibility of its direct experimental 
observation remains to be studied further. 

The authors are grateful to Prof. I.A. Yakovlev for useful discussions of the results. The work has 
been done in the framework of the program "Universities of Russia" (Project 12-96 f). 
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