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Yu. V. Grats and A. B. Lavrent'ev 

The feasibility of approximately calculating the Green function for the Poisson 
equation on the space En-2 X V2 and its regularized value in the limit of 
coinciding points is studied. 

In field theory, calculations of local observables involve calculations of the Green function and its 
derivatives in the limit of coinciding points. Even for the Minkowski space, the corresponding values are 
known to diverge, which requires the use of some regularization procedure. The situation grows even more 
complex against a curved space-time background, because nonzero local curvature causes the appearance 
of additional ultraviolet divergences [1]. 

If a space has conic singularities, the complexity of the problem increases to a still greater extent, 
because the existence of delta-function singularities of R renders the use of the de Witt-Schwinger expansion 
impossible. For a locally planar space with one conic singularity, the problem can nevertheless be solved 
exactly [2, 3], because the presence of four Killing's vectors makes it possible to separate variables in the 
wave equation. But the introduction of additional singularities and, as a consequence, the loss of axial 
symmetry change the situation radically. 

It appears that the way out can be found with the use of perturbation theory methods. In [3, 4], 
we reported some preliminary results obtained in consideration of nonlocal effects in multiconic spaces. 
The question of the behavior of high-order terms of the perturbation theory series and, in particular, its 
convergence, however, remains open. 

Consider the Riemann space En-2 x 112, which is the product of the (D - 2)-dimensional Euclidean 
space and the two-dimensional Riemann surface. The length interval of such a space can be written as 

D 

ds2 = L dx! + e-n(xo)Jabdx0 dxb (a, b, c ... = 1, 2). 
µ=3 

(1) 

Here, we resorted to the fact that the two-dimensional Riemann surface is locally conformal to the 
Euclidean plane. In the coordinate system defined as above, the Poisson equation for the Green function 
on space ( 1) has the form 

D 

where t..n = La; is the Laplace operator, and 
11=3 

D 
~ ~2 V(x) = -F(xc) ~ {)µ, 

µ=3 
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Consider the Nth term of the formal perturbation theory series for solving (2), 

G =Go+ GoVGo + ... + GoVGo •.. VGo + ... , 

vol. 52, No. 3 

(3) 

where Go is the Green function on the Euclidean D-din1ensional space. Writing Go in the form of the 
Fourier integral yields 

where 

D 

G ( ') - J d2q1 ;q,x'p( ) J d2qN ;q <'p( )ID ({ }· ') N x,x - (21f)2e q, ... (21f)2e N qN N q ,x,x , 

k1I = L k;,, Q; = 2::}~ 1 q;, q; = (q1j, q2;), and F(q;) is the Fourier transform of F(x). 
,,;;3 

(4) 

(5) 

Note that with D = 2, k11 should be set equal to zero. This means that all terms of series (3) beginning 
with the second one vanish, and, if conformal coordinates are selected, the Green function on V2 has the 
same form as the Green function on the Euclidean plane (also see [2, 4]). 

In our approach, calculations of the regularized G,..(x, x) value reduce to finding the regularized 
integral I~ ( {q }; x, x) = I~ ( { q} ). In terms of the integration over the Feynman parameters, I~( {q}) can be 
represented as 

(6) 

N N 

where d{zn} = dzo ... dzN · J ( 1 - L z;). Performing the k-+ k - L z;Q; substitution of variables in (6) 
i;;O i~o 

and integrating over angular variables transforms (6) to 

(7) 
where 

N N 2 

AN= 2.::z;(Q;)2 
- (2.::z;(Q;) . 

i:::.:1 j;;l 

The further integration can conveniently be performed in terms of the new variables k and fJ, 

k2 = k1_ + k~, ksin9 = kJ., kcos9 = k11. 

After the integrations over 8, (7) becomes 

ID({ }) _ N! 
N q - (21f}(41f)D/2 'r(D/2 - l)(D - 2 + 2N) 

The I~ integral written in this form can be calculated by the method of dimensional regularization. Indeed, 
at D < 2, the integral converges and can be transformed to 

I~({q}) = (8) 
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This expression allows an analytic continuation into the region D 2::: 2. At D = 4, 6, ... , the integral 
diverges because of the presence of poles at r{2 - D/2). It follows that the singular part of integral (8) takes 
the form of the pole (D-2k)-', k = 2, 3 .. ., and the finite contribution can be found by the technique usual 
for the method of dimensional regularization. Let us separately consider the case D = 2. Expression (8) is 
then finite and has an especially simple form 

1 
IN({q}) = - 4rrN" 

The Nth term of series (3) at D = 2 takes the form 

FN(x) 
GN(x, x) = ---. 

4rrN 

It follows that at IF(x)I < 1, the series is summable, and we obtain 

1 f!(x) 
Greg(x, x) = 

4
,, ln{l - F(x)) = -~, 

which coincides with the result of [2, 4]. 

(9) 

{10) 

{11) 

We see that with conformal coordinates selected on V2 , perturbation theory combined with the method 
of dimensional regularization leads to series with all terms well-defined. At D = 2, the series is summable, 
no matter what the form of the conformal factor, and the resulting expression for Greg(x, x) coincides with 
the one found by covariant separation of points. 
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