Литература

- 1. Свешников А.Г., Боголюбов А.Н., Минаев Д.В., Сычкова А.В. // Радиотехн. и электроника. 1993. **38**, № 5. С. 804.
- 2. Боголюбов А.Н., Минаев Д.В. // Вестн. Моск. ун-та. Физ.

РАДИОФИЗИКА

УДК 621.3.09:621.373.1

Астрон. 1993. №2. С. 67 (Moscow University Phys. Bull. 1993. N 2. P. 63).

3. Nelder J.A., Mead R. // Computer J. 1964. 7. P. 172.

Поступила в редакцию 05.02.97

КОНКУРЕНЦИЯ ПРОЦЕССОВ САМОЛОКАЛИЗАЦИИ И ДЕЛОКАЛИЗАЦИИ ДВУМЕРНЫХ ВОЛН В НЕЛИНЕЙНОЙ РЕШЕТКЕ

А. П. Сухоруков, А. В. Чурилова

(кафедра радиофизики)

Рассматривается эволюция колебаний в двумерных решетках с кубической нелинейностью вблизи седловой точки дисперсионной поверхности. С помощью двух найденных первых интегралов получено строгое аналитическое решение связанных нелинейных дифференциальных уравнений для ширин области возбуждения, описывающих процессы самолокализации и делокализации в двух взаимно перпендикулярных направлениях. Установлены основные закономерности пространственной динамики колебаний в зависимости от соотношения нелинейных и дисперсионных свойств системы.

Введение

Анализу динамических процессов при формировании двумерных нелинейных структур уделяется большое внимание в оптике, радиофизике, физике твердого тела, физике поверхностных волн и т.д. (см., напр., [1-4]). При этом особый интерес представляет изучение возбуждения решетки вблизи особых точек дисперсионной поверхности, где групповая скорость близка к нулю. Ранее нелинейная динамика рассматривалась в основном около экстремальных точек. При этом в рамках модели сплошной среды процессы самолокализации или делокализации описывалась 3D-уравнениями типа НУШ [5]. В настоящей статье внимание уделяется сравнительно новому типу нелинейной динамики вблизи седловой точки дисперсионной поверхности. Здесь вдоль одного направления развивается самолокализация, а в перпендикулярном — делокализация нелинейных колебаний. В соответствии с этим эволюционное уравнение для колебаний принимает принципиально другой вид: вторые производные по пространственным координатам, описывающие диффузию комплексной амплитуды в плоскости решетки, входят с разными знаками, а не с одним, как в НУШ. Нами выведена пара связанных нелинейных дифференциальных уравнений для ширин области возбуждения и получены строгое аналитическое и численное решения этих уравнений.

1. Эволюционные уравнения двумерных нелинейных колебаний

Рассмотрим двумерную решетку, составленную из контуров с резонансной частотой ω_0 и коэффициентом связи χ . Дисперсионное уравнение для колебаний такой системы имеет следующий вид [5]:

$$\cos\Phi_x + \cos\Phi_y = (\omega_0^2 - \omega^2)/(2\chi\omega^2), \qquad (1)$$

где Φ_x и Φ_y — набеги фазы на ячейку вдоль осей x и y соответственно. Из анализа (1) следует, что на частоте $\omega = \omega_0$ дисперсионная поверхность имеет четыре особые точки типа седла при $\Phi_x = \pm \pi$, $\Phi_y = 0$, и $\Phi_x = 0$, $\Phi_y = \perp \pi$.

Пусть решетка колеблется на частоте, близкой к ω_0 , с быстрой пространственной фазовой модуляцией, например, вдоль оси x: $\Phi_x = \pi$, $\Phi_y = 0$. В рамках модели сплошной среды с кубической нелинейностью можно получить уравнение для комплексной амплитуды колебаний [5] в виде

$$i\frac{\partial A}{\partial \theta} + D\left(\frac{\partial^2 A}{\partial x^2} - \frac{\partial^2 A}{\partial y^2}\right) + \delta A + \gamma |A^2|A = 0, \quad (2)$$

где $\theta = \omega_0 t$ — безразмерное время, $D = \chi l^2/2$ — коэффициент диффузии, l — расстояние между соседними контурами, $\delta = (\omega_0 - \omega)/\omega_0$ — отстройка частоты, γ коэффициент нелинейности. Если $\gamma D > 0$, то область возбуждения стремится уменьшиться вдоль оси x (самолокализация) и возрасти вдоль оси y (делокализация). При $\gamma D < 0$ оси меняются ролями.

По аналогии с методом безаберрационного описания самофокусировки [6] представим область колебаний в виде гауссовского распределения амплитуды с квадратичной фазовой модуляцией:

$$A = \left(E_0 \left/ \sqrt{f_x f_y} \right) \exp\left(-\frac{x^2}{(a_o^2 f_x^2)} - \frac{y^2}{(a_0^2 f_y^2)} - i\Psi \right) \,, \tag{3}$$

где фаза $\Psi = f'_x x^2/(4Df_y) - f'_y y^2/(4Df_y) + \varphi(t)$, а f_x и f_y — безразмерные ширины области возбуждения, меняющиеся во времени. Подставляя (3) в (2) и следуя стандартной методике [6], можно найти систему двух уравнений:

$$f_x'' = 1/f_x^3 - \alpha/(f_x^2 f_y), \quad f_y'' = 1/f_y^3 + \alpha/(f_x f_y^2), \quad (4)$$

где дифференцирование ведется по нормированному времени $\tau = \theta/t_d$, $t_d = 4D/a_0^2$ — безразмерное время дисперсионного расплывания, a_0 — начальный радиус области возбуждения, $\alpha = (\gamma E_0^2 a_0^2)/(4D)$ — параметр нелинейности. Система (4) имеет первые интегралы

$$H = (f'_x)^2 - (f'_y)^2 + 1/f_x^2 - 1/f_y^2 - 2\alpha/(f_x f_y), \quad (5)$$

$$I = f_x^2 - f_y^2 + 2\alpha\tau^2 + \beta\tau.$$
 (6)

Здесь Н — гамильтониан системы.

Рассмотрим далее эволюцию симметричного начального возбуждения решетки без фазовой модуляции, полагая $f_x(0) = f_y(0) = 1$, $f'_x(0) = f'_y(0) = 0$ и, следовательно, I = 0, $\beta = 0$. Результаты численного решения уравнений (4) при $\alpha = 100$ представлены на рис. 1. Видно, что сначала ширина вдоль оси x уменьшается (происходит самолокализация), а вдоль оси y возрастает (развивается делокализация). Затем после прохождения «фокуса» наблюдается нелинейное расплывание по обоим направлениям. Однако для данного случая можно получить строгое аналитическое решение.

2. Точное аналитическое решение уравнений для ширин области колебаний

Для начального возбуждения в виде круговой области $I = 0, \beta = 0$. В этом случае (6) преобразуется к более простому виду:

$$f_y^2 - f_x^2 = 2\alpha\tau^2 \,. \tag{7}$$

Теперь ширины выразим через вспомогательную функцию $g(\tau)$:

$$f_x = (2\alpha)^{1/2} \tau \operatorname{sh} g$$
, $f_y = (2\alpha)^{1/2} \tau \operatorname{ch} g$. (8)

При этом соотношение (7) выполняется тождественно. Подставляя (8) в (5), находим уравнение для $g(\tau)$ с разделяющимися переменными:

$$\frac{\alpha \operatorname{sh}(2g)dg}{(\alpha \operatorname{sh}(2g) - 1)^{1/2}} = \mp \frac{d\tau}{\tau^2} \,. \tag{9}$$

Здесь знак минус соответствует начальному убыванию функции g, а знак плюс — последующему ее росту (см. рис. 1). Интегрируя (9), получим

$$\left(\sqrt[4]{1+\alpha^2} + 1/\sqrt[4]{1+\alpha^2} \right) F(\beta, r) - -2\sqrt[4]{1+\alpha^2} E(\beta, r) + \left(2\alpha \operatorname{ch}(2g) \sqrt{\alpha \operatorname{sh}(2g) - 1} \right) / (10) / \left(\sqrt{1+\alpha^2} + \alpha \operatorname{sh}(2g) - 1 \right) = 2/\tau \,,$$

где $F(\beta, r)$ и $E(\beta, r)$ — эллиптические интегралы первого и второго рода соответственно [7],

$$\begin{split} r &= \sqrt{\left(\sqrt{1+\alpha^2}-1\right) \left/ \left(2\sqrt{1+\alpha^2}\right)} \;, \\ \beta &= \arccos\left(\left(\sqrt{1+\alpha^2}+1-\alpha\,\mathrm{sh}(2g)\right)\right/ \end{split}$$

 $/(\sqrt{1+\alpha^2}-1+\alpha \operatorname{sh}(2g)))$.

Проанализируем поведение функции $g(\tau)$, график которой представлен на рис. 1. В начальный момент времени $\tau = 0$ имеем $g \to \infty$. Затем значение функции падает и достигает минимума при то. Используя (7) и (8), можно показать, что в точке минимума вспомогательной функции касательные к кривым f_x, f_y проходят через начало координат: $f'_x = f_x/\tau_0, \ f'_y = f_y/\tau_0.$ В этой же точке τ_0 нетрудно получить точные аналитические выражения для ширин области возбуждения: $f_x= au_0\left/\sqrt{lpha+\sqrt{1+lpha^2}}\,,\,f_y= au_0\left/\sqrt{lpha+\sqrt{1+lpha^2}}\,.$ Если нелинейность велика: $\alpha \gg 1$, то примерно в тот же момент времени $au_{
m min} pprox au_0$ достигает минимального значения ширина области возбуждения вдоль оси x (направления самолокализации). Из (10) можно получить следующие простые выражения: $au_0 \approx au_{
m min} = 1, 18/\sqrt{lpha},$ $f_x(au_{\min}) = 0,83/lpha,\, f_y(au_{\min}) = 1,668,$ что с хорошей точностью подтверждается данными численных расчетов.

На рис. 2 представлены зависимости минимальной ширины $f_{x \min}$ и соответствующего этой точке значения $f_y(\tau_{\min})$ от параметра нелинейности α . Видно, что на больших временах наблюдения $\tau \to \infty$ эти функции стремятся к постоянным значениям, которые в принципе можно найти из неявных выражений типа (10).

Рис. 2. Зависимости минимальной ширины области возбуждения вдоль оси самолокализации $f_{x\min}$ и соответствующего этому же моменту времени значения ширины вдоль перпендикулярного направления $f_y(\tau_{\min})$ от параметра нелинейности α

Заключение

Таким образом, в работе исследована конкуренция процессов самолокализации и делокализации нелинейных колебаний двумерной решетки в двух взаимно перпендикулярных направлениях на частоте, близкой к седловой точке дисперсионной поверхности. Найдены точные аналитические решения двух связанных

УДК 577.346 ПРИРОДА НИЗКОТЕМПЕРАТУРНОГО ПИКА ТЕРМОГРАММ

ОПТИКА И СПЕКТРОСКОПИЯ

А.В.Гущин, А.К.Кукушкин

ЗАМЕДЛЕННОЙ ФЛУОРЕСЦЕНЦИИ ЛИСТЬЕВ

(кафедра биофизики)

Исследована связь между термограммами замедленной флуоресценции (ЗФ) и кривыми термолюминесценции (ТЛ) листьев высших растений. Показано, что низкотемпературный пик полосы *А* кривой ТЛ и первый пик термограмм ЗФ имеют одну природу.

Для исследования температурной зависимости активности фотосинтетического аппарата наряду с изучением термолюминесценции часто используют так называемый метод термограмм, основанный на регистрации флуоресценции (быстрой, замедленной) при непрерывном нагревании образца после предварительного охлаждения. Изучению термограмм быстрой флуоресценции и термолюминесценции (ТЛ) посвящено большое количество работ [1–3] и обзоров [4, 5]. Термограммы замедленной флуоресценции (ЗФ) исследованы намного меньше, а максимумы на термограммах ЗФ объясняются только на качественном уровне [6]. Поэтому нашей задачей было изучение низкотемпературного пика термограмм ЗФ с использованием данных по ЗФ и ТЛ.

нелинейных дифференциальных уравнений для ширин области возбуждения по двум осям. Результаты аналитических расчетов подтверждаются и дополняются данными численного моделирования. В частности, получены формулы для минимальной ширины и времени самокомпрессии.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант 96-02-18592) и Конкурсного центра фундаментального естествознания (грант 95-0-2.2-76).

Литература

- 1. Афраймович В. С., Некоркин В. И., Осипов Г. В., Шалфеев В. Д. Устойчивость структуры и хаос в нелинейных сетях синхронизации. Горький, 1989.
- Pouget J., Remoissenet M., Tamga J.M. // Phys. Rev. 1993. B47, № 22. P. 14866.
- Rainer Scharf, Bishop A.R. // Phys. Rev. 1991. A43, № 12. P. 6535.
- Ведерко А. В., Дубровская О. Б., Марченко В. Ф., Сухоруков А. П. // Вестн. Моск. ун-та. Физ. Астрон. 1992. № 3. С. 4 (Moscow University Phys. Bull. 1992. № 3. Р.5).
- 5. Сухоруков А. П., Чурилова А. В. // Изв. РАН, сер. физ. 1996. **60**, № 12. С. 80.
- 6. Виноградова М.Б., Руденко О.В., Сухоруков А. П. Теория волн. М., 1990.
- 7. Градитейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений. М., 1971.

Поступила в редакцию 09.12.96