АТОМНАЯ И ЯДЕРНАЯ ФИЗИКА

УДК 539. 163.3:538.945

МАГНИТНЫЕ СВЕРХТОНКИЕ ПОЛЯ НА ЯДРАХ ¹⁸¹Та В ФАЗАХ ЛАВЕСА RFe₂ (R = Tb, Ho, Yb)

А. А. Сорокин, Б. А. Комиссарова, Г. К. Рясный, С. И. Рейман, Л. Г. Шпинькова, А. В. Цвященко^{*)}, Е. Н. Ширани^{*)}, Л. Н. Фомичева^{*)}, А. С. Денисова^{**)}

(НИИЯФ)

Методом возмущенных угловых корреляций γ -квантов измерены магнитные сверхтонкие поля $B_{\rm hf}$ на ядрах ¹⁸¹ Та в фазах Лавеса YbFe₂, HoFe₂ и TbFe₂. При 300 К были получены следующие значения $B_{\rm hf}$ (Та): 18,5 Тл, 16,2 Тл и 12,1 Тл соответственно. Результаты эксперимента сравниваются с данными, полученными нами ранее для других фаз RFe₂.

1. Введение

Фазы Лавеса — это обширный класс интерметаллических соединений со стехиометрией AB_2 . Особый интерес среди них представляют соединения переходных 3d и редкоземельных элементов RT_2 (T = Mn, Fe, Co, Ni; R — редкоземельный элемент (РЗЭ)). Сочетание локализованного магнетизма R-ионов и зонного магнетизма T-элементов определяет большое многообразие магнитных свойств этих соединений (см., напр., [1]). Их свойства и электронная структура интенсивно исследуются различными методами, среди которых важное место занимают ядерно-спектроскопические методы сверхтонких взаимодействий.

Ранее нами были опубликованы результаты исследований магнитного сверхтонкого взаимодействия ядер ¹⁸¹Та в интерметаллидах RFe₂ (R=Pr, Nd, Sm, Gd, Lu) методом возмущенных угловых корреляций (BУК) $\gamma\gamma$ -каскада 133–482 кэВ, возбуждаемого при распаде ¹⁸¹Нf (см. [2, 3] и ссылки в них). В данной работе приводятся результаты подобных исследований для образцов с тяжелыми редкими землями TbFe₂, HoFe₂ и YbFe₂. Наличие систематических данных по соединениям с легкими и тяжелыми R-элементами позволит выяснить, как сказываются величина локализованного 4*f*-момента R-иона, тип магнитного упорядочения на величину и температурную зависимость магнитного сверхтонкого поля для Ta, которые в свою очередь связаны со степенью локализации 5*d*-электронов последнего [2, 4].

2. Методика эксперимента

Соединение YbFe₂ может быть синтезировано только путем спекания или сплавления исходных веществ при высоком давлении [5]. TbFe₂ и HoFe₂ могут быть сплавлены в обычных условиях, однако в данной работе все образцы были приготовлены одинаковым способом, а именно плавкой под давлением 80 кбар в специальной камере высокого давления. Конструкция камеры и метод плавки описаны в работе [6]. В процессе плавки всех образцов в шихту добавлялось небольшое количество (менее 1 вес.%) фазы Лавеса HfFe₂, предварительно облученной в реакторе и содержащей изотоп ¹⁸¹Hf ($T_{1/2} = 43$ сут) с высокой удельной активностью. Эта процедура обеспечивала растворение HfFe₂ в решетке RFe₂ и локализацию примесных атомов Hf в узлах замещения РЗЭ ионов. Качество исследуемых образцов контролировалось методом мёссбауэровской спектроскопии по ⁵⁷Fe путем сравнения полученных спектров с имеющимися в литературе данными [7].

При β -распаде ¹⁸¹Нf в ¹⁸¹Та возбуждается каскад γ-переходов с энергиями 133-482 кэВ, проходящий через изомерное состояние 482 кэВ с временем жизни $\tau = 15, 6$ нс. Спин этого состояния I = 5/2 и магнитный момент $\mu = 3,25 \ \mu_N \ (g = \mu/I = 1,30)$. Магнитное сверхтонкое поле, действующее на ядра ¹⁸¹Та, определялось методом ВУК указанного үү-каскада. Измерения проводились на автоматическом трехдетекторном сцинтилляционном спектрометре совпадений [8], позволяющем одновременно регистрировать временные спектры совпадений $N(t, \theta)$ при углах $\theta = 90^{\circ}$ и 180° между детекторами. В соответствии с общепринятой процедурой, основанной на теории ВУК [9], значения магнитных сверхтонких полей определялись в результате частотного анализа спектров анизотропии угловой корреляции R(t), вычисленной из $N(t, \theta)$ по формуле

$$R(t) = 2\frac{N(t, 180^{\circ}) - N(t, 90^{\circ})}{N(t, 180^{\circ}) + 2N(t, 90^{\circ})}$$

Для статического магнитного сверхтонкого взаимодействия в ненамагниченном ферромагнитном образце (т.е. с хаотической ориентацией доменов) анизотропия выражается следующим образом [9]:

$$R(t) = A\{0, 2+0, 4[\exp(-\Lambda\omega_L t)\cos\omega_L t + \exp(-2\Lambda\omega_L t)\cos 2\omega_L t]\}.$$
(1)

^{*)} Институт физики высоких давлений им. Л. Ф. Верещагина, РАН.

^{**)} Институт кристаллографии им. А.В. Шубникова, РАН.

Рис. 1. Мёссбауэровские спектры для образцов YbFe₂, HoFe₂, TbFe₂. В левой части — первичные спектры, в правой — спектры, полученные в результате вычитания вкладов от немагнитных соединений железа

Здесь $\omega_L = 2\pi g \mu_N B_{\rm hf}/h$ — частота ларморовской прецессии; коэффициент *A* вычисляется по известным ядерным параметрам для данного $\gamma\gamma$ -каскада и в нашем случае, с поправкой на угловое разрешение детекторов, A = -0, 24. Показатель экспоненты Λ характеризует разброс частот сверхтонкого взаимодействия за счет несовершенств кристалла в области пробного ядра (в предположении лоренцевского распределения частот около среднего значения).

3. Результаты измерений и обсуждение

Мёссбауэровские спектры образцов TbFe₂, HoFe₂ и YbFe₂ показаны на рис. 1. В центральной части экспериментальных спектров (левый столбец на рис. 1) наблюдаются линии, соответствующие неидентифицированным немагнитным соединениям железа, которые, по-видимому, содержатся в наружных слоях слитков, покрытых окалиной. После вычитания выделенных при обработке квадрупольных дублетов, обусловленных этими примесями, были получены спектры, представленные в правом столбце рис. 1. Сравнение с литературными данными [5, 7] показало, что они полностью совпадают со спектрами исследуемых фаз Лавеса. Для измерений спектров ВУК из расколотых слитков выбирались небольшие блестящие крупинки, свободные от окалины.

Временные спектры анизотропии ВУК для ¹⁸¹Та в TbFe₂, HoFe₂ и YbFe₂ были измерены в диапазоне от 80 К до температур, превышающих точку Кюри *T*. Экспериментальные спектры для T = 300 К и T > Tпредставлены на рис. 2. Для всех исследованных образцов (с учетом конечного разрешающего времени спектрометра $2\tau_0 = 1,8$ нс) измеренная амплитуда прецессии соответствовала величине A = -0,22 (см. формулу (1)). Это свидетельствует о том, что около 90% ядер ¹⁸¹Та находятся в регулярных узлах решетки исследованных соединений.

Наблюдаемое в спектрах ВУК затухание амплитуды прецессии обусловлено, по-видимому, дефектами решетки, создающими в области расположения пробных ядер Та градиент электрического поля (ГЭП) со случайным распределением величины и направления. Этот ГЭП определяет и монотонное уменьшение анизотропии в спектрах, измеренных при T > T. Среднеквадратичное значение квадрупольной частоты, описывающей затухание при T = 300 К, для всех трех образцов лежит в диапазоне 25–40 МГц. Это доказывает, что примесные ядра Та занимают узлы с высокой симметрией, а именно R-узлы в решетке RFe₂.

Рис. 2. Спектры анизотропии угловой корреляции 181 Та в YbFe₂, HoFe₂ и TbFe₂, измеренные при температурах T = 300 К и $T > T_c$

Рис. 3. Температурные зависимости магнитных сверхтонких полей на ядрах ¹⁸¹Та в YbFe₂, HoFe₂ и TbFe₂

Полученные из обработки спектров ВУК значения магнитных сверхтонких полей на ядрах ¹⁸¹Та приведены на рис. 3. В таблице даны значения $_{\rm hf}$ (Та) при T = 80 и 300 К для фаз Лавеса RFe₂ с тяжелыми РЗЭ (от Gd до Lu), изученных нами к настоящему времени.

Значения постоянной решетки, температуры Кюри, магнитных моментов РЗЭ и В_{hf}(Та) в фазах Лавеса RFe₂ с тяжелыми РЗЭ

R-ион	Постоянная	T_C, K	$\mu(R), \ \mu_B$	<i>B</i> _{hf} (Та), Тл	
	решетки, А			80 K	300 K
Gd	7,39	796	7,0	7,4	9,3
Tb	7,35	697	8,9	9,8	12,1
Dy	7,32	630	9,9	15,5	15,5
Ho	7,30	608	9,9	15,0	16,2
Er	7,28	587	9,0	-	-
Tm	7,23	600	6,9	-	-
Yb	7,24	560	4,0	18,0	18,5
Lu	7,22	596	$\mu(4f)=0$	20,5	20,5

Значения точек Кюри, определенные по спаду температурных зависимостей $_{\rm hf}$ (Ta), для TbFe₂ и HoFe₂ согласуются с известными значениями T [1, 5] в пределах ± 5 К. Для YbFe₂ нами получено значение $T \cong 560$ К, которое несколько выше приведенного в работе [5] значения 543 К.

Как видно из таблицы, абсолютная величина hf (Ta), в целом, возрастает с увеличением атомного номера R-элемента, в отличие от магнитных сверхтонких полей на ядрах R-элементов и Fe. Величины сверхтонких магнитных полей на ядрах R-элементов, измеренные методом ядерного магнитного резонанса [5], для тяжелых RFe₂ коррелируют с полным магнитным моментом R-ионов и имеют максимальные значения для Ho и Er. Значения магнитных сверхтонких полей на ядрах Fe во всех RFe₂ близки друг к другу (19–22 Tл [5]), как и магнитные моменты Fe (1, 7–1, 6 μ_B), и имеют тенденцию к незначительному уменьшению с увеличением атомного номера R-элемента (\approx 10%) в тяжелых RFe₂.

Зависимости $_{\rm hf}$ (Та) от температуры (рис. 3) имеют аномальный характер: в области низких температур, от 80 К до ~ 0, 5*T*, наблюдается увеличение сверхтонкого поля на ядрах Та вместо уменьшения, характерного для температурной зависимости полной намагниченности матрицы RFe₂, а также сверхтонких полей на ядрах Fe и R ионов. Аналогичное поведение, даже более ярко выраженное, наблюдалось нами для NdFe₂, SmFe₂, GdFe₂ и DyFe₂.

Величина $\Delta = B_{\rm hf}$ (Та; $T = 0, 5T_C$) – $B_{\rm hf}$ (Та; T = 80 K), которую можно рассматривать как меру температурной аномалии, для RFe₂ с R от Gd до Lu монотонно уменьшается с увеличением номера R. Для LuFe₂ (ион Lu имеет замкнутую 4*f*-электронную оболочку) температурная зависимость $_{\rm hf}$ (Та) практически повторяет температурную зависимость макроскопической намагниченности (*T*).

Наличие температурной аномалии и ее уменьшение при переходе от Gd к Lu позволяет предположить, что $B_{\rm hf}$ (Ta) состоит из двух вкладов противоположного знака: вклада, обусловленного поляризованными *s*-электронами проводимости, и вклада от собственного индуцированного за счет 5d - 3d-гибридизации момента Ta. С уменьшением спинового 4f момента редкоземельного иона величина второго вклада, по-видимому, уменьшается в связи с ослаблением 4f - 5d взаимодействия.

Литература

- 1. Wallace W.E. Rare Earth Intermetallics. N.Y., 1973.
- Сорокин А.А., Комиссарова Б.А., Шпинькова Л.Г. и др. // Изв. РАН, сер. физ. 1994. 58, № 4. С. 10.
- Сорокин А.А., Комиссарова Б.А., Рясный Г.К. и др. // ЖЭТФ. 1997. 111, № 3. С. 1085.
- 4. Yamada H. // Physica B. 1988. 149. P. 390.
- Meyer C., Hartmann-Boutron F., Gros Y., Berthier Y. // J. de Physique. 1981. 42. P. 605.
- 6. Tsvyashchenko A.V. // J. Less-Comm. Met. 1984. 99. P. L9.
- Bowden G.J., Bunbury D.St.P., Guimaraes A.P. et al. // J. Phys. C, ser. 2. 1968. 1. P. 1376.
- Аксельрод З.З., Комиссарова Б.А., Крюкова Л.Н. и др. // Приб. и техн. эксперимента. 1983. 36. С. 28.
- Альфа-, бета- и гамма-спектроскопия / Ред. К. Зигбан. М., 1969. Вып 3. С. 211.

Поступила в редакцию 20.12.96