УДК 539.1

ЭЛЕКТРОИНДУЦИРОВАННЫЙ РАСПАД ПРОТОНА В ЯДРЕ

Б. С. Ишханов, И. М. Капитонов, В. Н. Родионов*)

(НИИЯФ)

Проведены оценки эффективного сечения электроиндуцированного распада протона. На их основе предлагается эксперимент по наблюдению распада протона в ядре, инициированного интенсивными потоками электронов и гамма-квантов от современных ускорителей.

Процессы упругого и неупругого рассеяния фотонов и электронов на ядрах изучены достаточно подробно (см. [1] и цитированные там работы). Однако имеется ряд интересных проблем, относящихся к различным областям энергий возбуждения атомных ядер, решение которых требует специального изучения. Особую роль здесь играют припороговые значения энергий выхода нуклонов и мезонов.

Пучки лептонов можно использовать для получения информации о строении ядра при изучении ядерных реакций, обусловленных более слабыми силами по сравнению с силами, действующими между нуклонами. Подобный подход использует преимущества, которые свойственны хорошо разработанным и надежным методам квантовой электродинамики. Аналогичный подход может быть реализован и в слабых взаимодействиях. Классическим примером реакций подобного типа можно считать процесс захвата протоном антинейтрино

$$\tilde{\nu} + P \to n + e^+. \tag{1}$$

Такие реакции слишком трудно наблюдать экспериментально из-за малости их сечений, характерной для слабых взаимодействий, и слабой интенсивности нейтринных потоков.

Ситуация, однако, может заметно измениться, если реакции, обусловленные слабым взаимодействием, индуцировать частицами, интенсивности потоков которых будут существенно превышать существующие потоки нейтрино. Как наиболее перспективные в этом отношении могут рассматриваться источники фотонов и электронов.

Следует отметить, что в 1980-е гг. довольно бурно дискутировался вопрос об использовании лазерной техники для ускорения распадов некоторых ядер [2–5]. Однако в этих работах отмечено, что экспериментальная проверка влияния лазерного излучения на скорости реакций, идущих и в отсутствие возмущения за счет многофотонных процессов взаимодействия заряженных частиц с полем, оказалась затруднительной.

Тем не менее существует ситуация, когда электромагнитное поле способно индуцировать распад ядер, стабильных в отсутствие поля, уже в одноквантовых реакциях. На процессы такого типа впервые было обращено внимание в работе [6], где изучались ядерные

распады, индуцируемые фотонами высоких энергий. Однако на сегодняшний день более перспективно изучение подобных реакций вблизи их порога.

Слабые процессы можно также изучать с помощью интенсивных потоков электронов. В этом случае в низшем порядке по константе взаимодействия не возникает дополнительных электромагнитных вершин. Однако существуют трудности экспериментального наблюдения реакций, которые в первую очередь связаны с фокусировкой потока и транспортом энергии к поверхности мишени.

В настоящей работе обсуждаются экспериментальные возможности наблюдения процессов электро- и фотоиндуцированного слабых взаимодействий, которые предполагается осуществить при энергиях электронов в допороговой области известных электроядерных реакций [1]. Одной из реакций, наблюдение которой может иметь принципиальное значение, является реакция

$$e^- + P \to n + \nu. \tag{2}$$

Вероятность и сечение этого процесса в низшем порядке по константе слабого взаимодействия g в фермиевской теории можно записать в виде

$$W = \frac{2\pi}{\hbar} |H|^2 \delta(E_e - E_\nu - E_0), \tag{3}$$

где

$$H = g \int d\tau \psi_p^* \psi_n \psi_e^* \psi_\nu, \tag{4}$$

 $_e,\,E_{
u}$ — энергия электрона и нейтрино соответственно, E_0 — пороговая энергия реакции. Учитывая рассматриваемое нерелятивистское приближение и предполагая протон покоящимся, для вероятности процесса (2) можно получить соотношение

$$W = \frac{g^2}{\pi \hbar^4 c^3} (\varepsilon_e - \varepsilon_0)^2, \tag{5}$$

где $\varepsilon_e=E_e/mc^2, \varepsilon_0=E_0/mc^2$. Если учесть вклад не только векторной, но и аксиально-векторной части в нуклонном токе перехода, то в выражении (5) вместо g^2 необходимо подставить $g^2(1+3\alpha^2)$, где α — отношение псевдовекторной и векторной частей взаимодействия. В этом случае для сечения того же процесса имеем

$$\sigma = \frac{1}{\pi} \frac{g^2 (1 + 3\alpha^2) m^2}{\hbar^4} \frac{\varepsilon_e (\varepsilon_e - \varepsilon_0)^2}{\sqrt{\varepsilon_e^2 - 1}}.$$
 (6)

^{*)} Московская государственная геологоразведочная академия.

Подставляя в (6) значения констант и выражая энергетическую переменную E_e в МэВ (при этом E_0 = =0,8 МэВ), получим расчетную формулу для сечения:

$$\sigma = 7, 6 \cdot 10^{-44} \frac{E_e(E_e - 0, 8)^2}{\sqrt{E_e^2 - 0, 26}} \text{ (cm}^2).$$
 (7)

При энергии электронов ~ 3 МэВ из (7) следует $\sigma = 2, 2 \cdot 10^{-43} \mathrm{cm}^2$.

Для экспериментального наблюдения реакции (2) необходимо учитывать, что вследствие небольшой проникающей способности электронов эффективное взаимодействие с протонами можно осуществить лишь в приповерхностном слое мишени. Для наблюдения реакции (2) при средней частоте появления сигнала порядка $R \sim 1,5$ ч $^{-1}$ необходимо, чтобы плотность потока

электронов на 3-4 порядка превышала имеющиеся в настоящее время экспериментальные возможности.

Трудность регистрации продуктов, возникающих в реакции (2), стимулирует поиск иных вариантов эксперимента. В настоящее время перспективной является возможность наблюдения процессов типа (2) на более тяжелых ядрах и использования твердотельных мишеней:

$$e^- + (A, Z) \to (A, Z - 1) + \nu.$$
 (8)

Анализ таблицы нуклидов [7] выявил три наиболее удобных для эксперимента: 31 P, 127 I, 209 Bi со 100%-м содержанием в естественной смеси изотопов, на которых реакция (8) может быть обнаружена путем регистрации β -активности ядра-продукта (таблица).

Реакции для экспериментального наблюдения электроиндуцированного распада протона

Ядро- мишень	Реакция	Порог (МэВ)	Бета-распад ядра-продукта	Период полураспада $T_{1/2}$ (час)
³¹ P ¹²⁷ I ²⁰⁹ Bi	$\begin{array}{c} e^{-} + ^{31}{\rm P} \rightarrow ^{31}{\rm Si} + \nu \\ e^{-} + ^{127}{\rm I} \rightarrow ^{127}{\rm Te} + \nu \\ e^{-} + ^{209}{\rm Bi} \rightarrow ^{209}{\rm Pb} + \nu \end{array}$	1,492 0,696 0,644	$\begin{array}{c} {^{31}{\rm Si}} \to {^{31}{\rm P}} + e^- + \widetilde{\nu} \\ {^{127}{\rm Te}} \to {^{127}{\rm I}} + e^- + \widetilde{\nu} \\ {^{209}{\rm Pb}} \to {^{209}{\rm Bi}} + e^- + \widetilde{\nu} \end{array}$	2,6 9,5 3,3

Как видно из таблицы, рассматриваемые реакции обладают достаточно низкими порогами, лежащими существенно ниже порогов электроядерных реакций с выбиванием из ядра одного или нескольких нуклонов. В силу этого при использовании электронов с энергиями до 5 МэВ в мишенях и элементах установки не будут возникать интерферирующие β -активности в результате процессов электрорасщепления ядер. Бета-активности остаточных ядер ³¹ Si, ¹²⁷ Te и ²⁰⁹ Pb могут быть зарегистрированы с помощью низкофоновых β -счетчиков. При этом эффективность регистрации электронов распада (даже с учетом геометрической эффективности) можно сделать близкой к 100%.

Исходя из величины сечения, приведенного выше $(2,2\cdot 10^{-43}~{\rm cm}^2)$, можно оценить выходы реакций, перечисленных в таблице. Если использовать мишень, толщина которой равна пробегу электронов с энергией 3 МэВ $(1,5-1,8~{\rm r/cm}^2)$, то одно интересующее нас событие будет приходиться на 10^{19} электронов, падающих на мишень. Если мишень после облучения в электронном пучке поместить между β -счетчиками и измерить зависимость скорости β -распада от времени, то, исходя из требования регистрации 1-2 распадов в минуту, необходимо иметь в мишени к концу сеанса облучения примерно 500 ядер, испытавших электронный захват. Такое количество ядер можно получить, доводя активацию до насыщения (например, $\Delta t \sim (4-5)T_{1/2} \simeq 15~{\rm u}$ для мишени 209 Pb) при токе электронов $\sim 50~{\rm mA}$.

Схема эксперимента в общих чертах такова. Мишень из исследуемого изотопа в виде набора тонких пластинок общей толщиной 1,8 г/см² помещается в пучок электронов, падающих нормально к поверхности мишени. Использование мишени в виде набора тонких пластин связано с тем, что регистрируемые электроны распада не должны застревать в мишени (максимальные энергии электронов распада равны порогам реакций, приведенным в таблице). Такая конструкция значительно облегчает теплосъем с облучаемой мишени и позволяет повысить эффективность регистрации продуктов β -распада.

Другая привлекательная возможность реализации эксперимента, отмеченная выше, связана с изучением слабых процессов в фотонных пучках [6],

$$\gamma + (A, Z) \to (A, Z - 1) + e^+ + \nu_e.$$
 (9)

Такой эксперимент может быть реализован за счет получения интенсивного фотонного пучка путем конвертирования потока электронов. Отметим, что все перечисленные в таблице реакции могут быть осуществлены и по схеме (9). При этом их пороги будут выше указанных в таблице всего лишь на величину $2m_ec^2 = 1,022$ МэВ, т.е. и в этом случае можно сохранить все преимущества эксперимента при энергиях ниже порогов фотоядерных реакций [1]. Дополнительные возможности здесь связаны с отсутствием технических проблем теплосъема, так как в качестве мишени, на которой электронный пучок будет конвертироваться в фотонный, можно использовать тугоплавкий металл, например вольфрам. Простые оценки показывают, что толщина мишени для максимального выхода фотонов должна быть порядка 3 мм. При этом на один падающий электрон с энергией в несколько МэВ будет генерироваться около 0,2-0,5 фотона с энергией выше порога реакции (9).

Основное преимущество такой постановки эксперимента состоит в том, что можно использовать более толстые мишени, чем при облучении их электронами. Следует отметить, что фейнмановская диаграмма, соответствующая реакции (9), будет содержать дополнительную электромагнитную вершину взаимодействия, что приведет к уменьшению сечения по сравнению с (8) на величину порядка 10^{-2} [6]. Однако увеличение толщины мишени может скомпенсировать это различие.

Действительно, легко видеть, что в случае использования фотонов снимаются ограничения, связанные с пробегом электронов в мишени, и она может быть выбрана в 10–20 раз более толстой, чем при ее облучении электронами. Самопоглощение фотонов в такой мишени будет составлять примерно 10%.

Таким образом, можно обоснованно надеяться, что с помощью указанной выше техники и методики измерений эксперимент по фото- или электроиндуцированному распаду протона можно провести на имеющихся

ускорителях электронов. Подтверждение электро- или фотораспада протона откроет новые возможности для исследований целого ряда ядерных процессов в допороговой области значений энергии.

Литература

- 1. *Варламов В.В., Сапуненко В.В., Степанов М.Е.* Фотоядерные данные. 1976–1995: Указатель. М., 1996.
- 2. Тернов И.М., Родионов В.Н., Дорофеев О.Ф. // ЖЭТФ. 1983. **84**. C. 1225.
- 3. *Тернов И.М., Родионов В.Н.* и др. // Письма в ЖЭТФ. 1984. **37**. С. 288.
- 4. Никишов А.И., Ритус В.И. // ЖЭТФ. 1983. 85. С. 24.
- 5. Ахмедов Е.Х. // ЖЭТФ. 1983. 85. С. 1521.
- 6. Тернов И.М., Родионов В.Н., Дорофеев О.Ф. // Письма в ЖТФ. 1983. 9. С. 230.
- 7. *Tuli J.K.*// Nuclear Wallet Cards. July 1995. National Nuclear Data Center. Brookhaven National Laboratory, USA.

Поступила в редакцию 26.03.97