ОПТИКА И СПЕКТРОСКОПИЯ

УДК 535.3

ДИНАМИКА СТОХАСТИЗАЦИИ АМПЛИТУДЫ И СКОРОСТИ ОПТИЧЕСКИХ СОЛИТОНОВ ШУМАМИ СПОНТАННОГО КОМБИНАЦИОННОГО РАССЕЯНИЯ

В. А. Алешкевич, В. А. Выслоух, К. Г. Скиртач

(кафедра общей физики)

Проведен теоретический анализ влияния шумов спонтанного комбинационного рассеяния на параметры оптических солитонов. На основе теории возмущений получены интегральные представления для дисперсии флуктуаций амплитуды и частоты солитонных импульсов, прослежена динамика нарастания флуктуаций с расстоянием.

Введение

Создание лабораторных макетов солитонных линий волоконно-оптической связи, реализующих скорости передачи информации в одном частотном канале до 10–20 Гбит/с на расстояния 10^4 – 10^6 км [1, 2], стимулирует всестороннее теоретическое исследование солитонных режимов распространения пикосекундных лазерных импульсов на сверхдальние расстояния. Значительное внимание уделяется анализу влияния случайных воздействий, стохастизирующих параметры оптических солитонов и ограничивающих предельную скорость передачи информации. Работы, выполненные в этом направлении за последние годы, можно условно разделить на две группы.

Первая из них посвящена исследованию эволюции случайных возмущений входных имульсов, вызванных неполной синхронизацией мод лазера, квантовыми шумами и т.п. Обзор этих работ приведен, например, в работе [3]. Во второй группе публикаций рассматриваются стохастические возмущения, действующие на трассе распространения как на активных (волоконные усилители), так и на пассивных участках световода. В волоконных усилителях основную деструктивную роль играют шумы спонтанной люминесценции, стохастизирующие, в частности, время прибытия импульса и ограничивающие предельную скорость передачи информации — так называемый эффект Гордона-Хауса [4, 5]. Для подавления этого эффекта оптимизируются параметры и расположение усилителей [6], успешно используются полосовые спектральные фильтры со «скользящей» центральной частотой [7]. На пассивных участках световода негативное влияние оказывает вынужденное рассеяние Мандельштама-Бриллюена, приводящее к появлению паразитного взаимодействия солитонных импульсов [8].

Недостаточное, на наш взгляд, внимание уделяется исследованию воздействия шумов спонтанного комбинационного рассеяния (СКР) на параметры оптических солитонов. Хотя речь идет о весьма слабом эффекте (типичная интенсивность шумов СКР составляет 10^{-6} от интенсивности импульса), чрезвычайно большая длина трассы распространения обусловливает

интерес к этой проблематике. Целью настоящей работы является теоретический анализ количественных закономерностей стохастизации параметров солитонного импульса шумами СКР на пассивном участке световода. Математическая специфика задачи состоит в наличии существенного частотного сдвига между центром линии СКР и спектром солитона. Для аналитического рассмотрения мы используем и развиваем теорию возмущений, базирующуюся на аппарате обратной задачи рассеяния [9, 10].

Математическое описание

Основное уравнение, описывающее самовоздействие сверхкороткого лазерного импульса в комбинационно-активной среде, записанное в приближении медленно меняющихся амплитуд, имеет вид [10]

$$i\frac{\partial q}{\partial z} = \frac{1}{2}\frac{\partial^2 q}{\partial \tau^2} + (1 - \beta)|q|^2 q + \beta Qq. \tag{1}$$

Первое слагаемое в правой части (1) ответственно за дисперсионное расплывание импульса, второе — за его фазовую самомодуляцию, обусловленную практически безынерционным электронным эффектом Керра. Третье слагаемое учитывает нетривиально зависящий от времени рамановский вклад в нелинейную поляризацию. В уравнении (1) бегущее время $\tau=(t-z/U)$ нормировано на начальную длительность импульса τ_0 , расстояние z — на дисперсионную длину $L_d=\tau_0^2/|k_2|$, $k_2=\partial^2k/\partial\omega^2$, U — групповая скорость. Комплексная амплитуда q выражена в солитонных единицах: $q_0=\left[8\pi k_2/(\tau_0^2k_0\tilde{n}_2cn_0)\right]^{1/2}$, где \tilde{n}_2 — коэффициент нелинейности (в кварцевом стекле $\tilde{n}_2=3,2\cdot 10^{-16}$ cm²/Вт), n_0 — показатель преломления. Весовой коэффициент $\beta\approx 0,2$ характеризует долю стационарного рамановского вклада в нелинейную поляризацию.

В рамках классического описания нормированная амплитуда молекулярных колебаний Q(z,t) удовлетворяет линейному дифференциальному уравнению

$$\mu^2 \frac{\partial^2 Q}{\partial \tau^2} + 2\mu \gamma \frac{\partial Q}{\partial \tau} + Q = |q|^2 + \sigma F(z, t), \tag{2}$$

в котором безразмерный параметр $\mu = 1/(\tau_0 \omega_R)$ характеризует отношение ширины спектра солитонного импульса к частоте комбинационного резонанса ω_R , параметр $\gamma=1/(T_2\omega_R)$ — это отношение ширины линии комбинационного рассеяния, определяемой временем T_2 , к ω_R . Для кварцевых стекол типичны значения $\omega_R=8,3\cdot 10^{13}~{
m c}^{-1}, T_2=50~{
m фс}.$ Амплитуда молекулярных колебаний нормирована на $Q_0 = lpha_Q' q_0^2/(4M\omega_R^2)$, где $\alpha_O' = \partial \alpha/\partial Q$, $\alpha(Q)$ — электронная поляризуемость молекулы, параметрически зависящая от Q. Слагаемое F(z,t) в правой части (2) — это случайная сила, δ -коррелированная по z и τ и нормированная на $\alpha_O'q_0^2/4$, σ ее амплитуда. Эта сила обусловливает спонтанное комбинационное рассеяние. Слагаемое, пропорциональное интенсивности $|q|^2$, описывает нелинейный процесс комбинационное саморассеяние импульса, которое приводит к монотонному сдвигу несущей частоты в красную область спектра [10]. Так как уравнение (2) линейно, а комбинационный вклад в поляризацию мал, то в первом порядке теории возмущений оба этих эффекта (СКР и комбинационное саморассеяние) можно рассматривать независимо. В дальнейшем мы сосредоточимся на анализе роли случайной компоненты Q, соответствующей шумам СКР.

Начальные условия для задачи (1), (2) задаются в виде односолитонного импульса:

$$q_s = \kappa \operatorname{sech} \left\{ \kappa \left[(\tau - \tau_s) + \Omega_s z \right] \right\} \exp[i\Phi(z, \tau)],$$

$$\Phi(z, \tau) = \Omega_s (\tau - \tau_s) - \left(\kappa^2 - \Omega_s^2\right)^2 z / 2 + \varphi_s,$$
(3)

где параметр κ , называемый формфактором, определяет амплитуду солитона и его длительность, Ω_s — нормированный на τ_0^{-1} сдвиг частоты солитона относительно несущей, τ_s — временная координата его центра, φ_s — начальная фаза.

Возмущения солитонных параметров

Структурная устойчивость солитонных импульсов, а также малость амплитуды шумов спонтанного комбинационного рассеяния дают основание искать решение системы (1), (2) в виде (3) с параметрами, зависящими от эволюционной переменной $z: \kappa = \kappa(z), \, \Omega_s = \Omega_s(z)$ и т.п. На малом участке распространения dz возмущения комплексной амплитуды δq за счет рамановского вклада в нелинейную поляризацию имеют вид

$$\delta q(z+dz,\tau) = -i\beta Q(z,\tau)\kappa \operatorname{sech}(\kappa\tau) \exp(-i\kappa^2 z/2) dz,$$
 (4)

где без ограничения общности мы положили $\Omega_s=0,$ $\varphi_s=0,$ $\tau_s=0.$ Для вычисления соответствующих возмущений формфактора и частоты солитона можно воспользоваться известными формулами [9]:

$$\delta \kappa = \kappa \int_{-\infty}^{\infty} \operatorname{sech}(\kappa \tau) \operatorname{Re}(\delta q) d\tau, \tag{5}$$

$$\delta\Omega_s = \kappa \int_{-\infty}^{\infty} \operatorname{sech}(\kappa \tau) \operatorname{th}(\kappa \tau) \operatorname{Im}(\delta q) d\tau.$$
 (6)

Подстановка (4) в (5) и последующее интегрирование по z позволяет вычислить возмущение формфактора:

$$\delta\kappa(z) = -\beta \int_{0}^{z} \sin(\kappa^{2}\zeta) \int_{-\infty}^{\infty} K_{1}(\tau)Q(\tau,\zeta) d\tau d\zeta, \quad (7)$$

где $K_1(\tau) = \kappa^2 \operatorname{sech}^2(\kappa \tau)$. Усреднение (7) по ансамблю реализации (далее оно обозначено угловыми скобками) с учетом $\langle Q(\tau\zeta)\rangle = 0$ показывает, что среднее значение флуктуаций формфактора равно нулю. Исходя из (4), (5) с учетом δ -коррелированности флуктуаций Q по z, можно получить следующее интегральное представление для дисперсии флуктуаций формфактора:

$$\langle (\delta \kappa)^2 \rangle = \beta^2 f_1(z) \iint K_1(\tau_1) K_1(\tau_2) \langle Q(\tau_1) Q(\tau_2) \rangle d\tau_1 d\tau_2,$$

где функция $f_1(z)=(1/2)z\left[1-\mathrm{sinc}(\kappa^2z)\right],\ \mathrm{sinc}(\kappa^2z)\equiv \equiv \sin(\kappa^2z)/(\kappa^2z)$ описывает изменение искомой дисперсии по z, интегрирование в (8) проводится в бесконечных пределах. Заменой переменных $u=\tau_2-\tau_1,\ v=\tau_1$ выражение (8) преобразуется к виду

$$\langle (\delta \kappa)^2 \rangle = \beta^2 f_1(z) \int_{-\infty}^{\infty} B(u) Y_1(u) du,$$
 (9)

где интеграл

$$Y_{1}(u) = \int_{-\infty}^{\infty} K_{1}(v)K_{1}(v-u) dv$$
 (10)

представляет собой свертку, а $B(u) = \langle Q(v)Q(v-u)\rangle$ — корреляционная функция стационарного шума колебательной координаты Q, зависящая только от $u=\tau_2-\tau_1$. Переходя в (9), (10) к спектральному представлению, получаем выражение для дисперсии флуктуаций формфактора в виде интеграла перекрытия:

$$\langle (\delta \kappa)^2 \rangle = \beta^2 \sigma^2 \kappa^2 \frac{2}{\pi} \int_{-\infty}^{\infty} H(\Omega) G(\Omega - \Omega_R) d\Omega,$$
 (11)

в котором функция $H(\Omega) = [\pi\Omega/(2\kappa)]^2/\sinh^2[\pi\Omega/(2\kappa)]$ параметрически зависит от формфактора солитонного импульса, а спектральная плотность

$$G(\Omega - \Omega_R) = \frac{\Omega_R^4}{(\Omega^2 - \Omega_R^2)^2 + 4\Gamma^2 \Omega^2}$$
 (12)

определяется только параметрами линии СКР. В формуле (12) $\Gamma = \tau_0/T_2$ — приведенная ширина линии СКР, $\Omega_R = \omega_R \tau_0$, $\Omega = \omega \tau_0$ — нормированные частоты. Если ширина спектра солитонного импульса $2\kappa/\pi$ мала по сравнению с Γ и Ω_R , то функцию $H(\Omega)$ можно аппроксимировать δ -функцией Дирака с надлежащим нормирующим множителем: $H(\Omega) \approx (2\pi\kappa/3)\delta(\Omega)$ и записать упрощенное выражение для дисперсии: $\langle (\delta\kappa)^2 \rangle \approx (4\beta^2\sigma^2\kappa^3/3)f_1(z)$.

Аналогичное рассмотрение, основанное на соотношениях (4) и (6), позволяет получить выражение для возмущения частоты солитона:

$$\delta\Omega_s = \beta \int_0^z \cos(\kappa^2 \zeta) \int_{-\infty}^\infty K_2(\tau) Q(\tau, \zeta) d\tau d\zeta.$$
 (13)

Усреднение (13) по ансамблю реализаций показывает, что среднее значение флуктуаций частоты солитона равно нулю. Для дисперсии флуктуаций частоты получается представление в виде интеграла перекрытия, аналогичного по структуре (11):

$$\left\langle (\delta\Omega_s)^2 \right\rangle = \frac{1}{2\pi} \beta^2 \sigma^2 f_2(z) \int\limits_{-\infty}^{\infty} \Omega^2 H(\Omega) G(\Omega - \Omega_R) d\Omega,$$
 (14)

но с дополнительным подынтегральным весовым множителем Ω^2 . Нарастание флуктуаций частоты с расстоянием определяется функцией $f_2(z)=(z/2)[1+\mathrm{sinc}(\kappa^2z)]$. Анализ функции $\Omega^2 H(\Omega)$ показывает, что она имеет максимум в точке $\Omega_m\approx 2$. Для спектрально узкого солитона, когда $\kappa\to\infty$, можно воспользоваться аппроксимацией: $\Omega^2 H(\Omega)\approx (\kappa\pi^3/15)\delta(\Omega-\Omega_m)$, что приводит к оценке $\langle (\delta\Omega_s)^2\rangle=(\pi^2\beta^2\sigma^2\kappa^2/30)G(\Omega_m-\Omega_R)$.

Обсуждение результатов

Перейдем к физическому анализу полученных результатов. На рис. 1 представлена зависимость дисперсии флуктуаций формфактора, определяемой функцией $f_1(z)$, от расстояния и аналогичная зависимость дисперсии флуктуаций частоты (функция $f_2(z)$). Видно, что шумы СКР вначале стохастизируют фазу и, следовательно, частоту солитона и лишь на расстоянии порядка дисперсионной длины $(z\approx 1)$ происходит конверсия фазовых флуктуаций в амплитудные. На больших расстояниях $\langle (\delta\kappa)^2 \rangle$ и $\langle (\delta\Omega_s)^2 \rangle$ нарастают практически линейно, так как обе функции $f_1(z)$ и $f_2(z)$ имеют одинаковые асимптотики z/2.

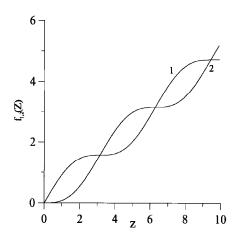
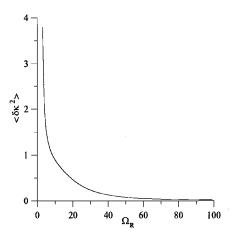
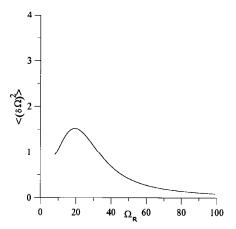


Рис. 1. Зависимость нормированной дисперсии флуктуаций формфактора (кривая 1) и частоты солитона (кривая 2) от приведенной длины световода

Привлекает внимание сильная зависимость уровня флуктуаций от формфактора. Из (11) следует, что дисперсия $\langle (\delta \kappa)^2 \rangle$ пропорциональна κ^2 , а $\langle (\delta \Omega_s)^2 \rangle - \kappa^3$. По мере роста формфактора и, следовательно, уменьшения длительности импульса уширяется его спектр и возрастает интеграл перекрытия, т.е. доля шумового излучения, непосредственно возмущающего спектр солитона.



 $Puc.\ 2.$ Дисперсия флуктуаций формфактора в зависимости от нормированной частоты комбинационного резонанса ($\Gamma=2$)



 $Puc.\ 3.$ Дисперсия флуктуаций частоты в зависимости от нормированной частоты комбинационного резонанса ($\Gamma=2$)

Кратко обсудим зависимость уровня флуктуаций от параметров линии СКР — нормированной резонансной частоты Ω_R и ширины линии Γ . На рис. 2 приведена зависимость $\langle (\delta\kappa)^2 \rangle$ от Ω_R , вычисленная при $\Gamma=2$. Быстрое убывание этой функции связано с уменьшением интеграла перекрытия (11) из-за сдвига центра линии. Менее тривиальной является зависимость дисперсии флуктуации частоты $\langle (\delta\Omega_s)^2 \rangle$ от Ω_R — она имеет немонотонный ход (рис. 3, $\Gamma=2$). Максимальный уровень флуктуаций частоты соответствует ситуации, когда частота комбинационного резонанса близка к точке перегиба спектра солитона. Математически это связано с наличием весового множителя Ω^2 в интеграле перекрытия (14), а физически — с тем обстоятельством,

что для эффективного возмущения частоты необходимо сочетание заметного перекрытия спектров с наличием соответствующего сдвига центральной частоты шума. В принятой нормировке (см. (12)) дисперсия флуктуаций обоих солитонных параметров монотонно убывает с ростом Γ из-за уменьшения интенсивности шумов СКР.

Аккуратные численные оценки уровня флуктуаций требуют учета специфики структуры световода, которая определяет долю каналируемой мощности СКР, наличия легирующих добавок в материале сердцевины и других факторов. Однако на уровне порядков величин из упрощенной версии формулы (11) следует, что нормированное отклонение флуктуаций формфактора растет с расстоянием в темпе 10^{-6} относительных единиц на дисперсионную длину и достигает 10% уровня на расстоянии порядка 10^5 дисперсионных длин. Для солитона с длительностью 6 пс дисперсионная длина соответствует примерно 1 км, но при сокращении длительности до 600 фс она уменьшается до 10 м.

Подводя итоги, следует отметить, что шумы спонтанного комбинационного рассеяния весьма слабо стохастизируют параметры солитонных импульсов длительностью в десятки пикосекунд благодаря малости

соответствующих интегралов перекрытия спектров, но могут оказаться весьма существенными для фемтосекундных оптических солитонов на длинных трассах распространения.

Литература

- 1. Mollenauer L.F., Lichtman E., Harvey G.T. et al. // Electron. Lett. 1992. 28, No.8. P. 792.
- 2. *Nakazawa M., Yamada E., Kubota H., Suzuki E. //* Electron. Lett. 1991. **27**, No.14. P. 1270.
- 3. Ахманов С.А., Выслоух В.А., Чиркин А.С. Оптика фемтосекундных лазерных импульсов. М., 1988.
- 4. Gordon G.P., Hauss H.A. // Opt. Lett. 1986. 11, No.10. P. 665.
- 5. Алешкевич В.А., Жукарев А.С., Скиртач К.Г. // Квант. электроника. 1996. **23**, № 10. С. 902.
- 6. Kodama Y., Hasegawa A. // Opt. Lett. 1992. 17, No.1. P. 31.
- 7. Mollenauer L.F., Gordon G.P., Evangelides S.G. // Opt. Lett. 1992. 17, No.22. P. 1575.
- 8. Dianov E.M., Luchnikov A.V., Pilipetskii A.N., Prokhorov A.M. // Soviet Lightwave Communications. 1991. 1, No.3. P. 235.
- Vysloukh V.A., Cherednik I.V. // Sov. Phys. Dokl. 1986. 33, No.7. P. 532.
- 10. *Алешкевич В.А., Выслоух В.А.* // Вестн. Моск. ун-та. Физ. Астрон. 1995. № 5. С. 29 (Moscow University Phys. Bull. 1995. No.5. P. 28).

Поступила в редакцию 12.03.97