
Moscow University 
Physics Bulletin 
Vol. 53, No.1, pp.1-5, 1998 

Vestnik Moskovskogo 
Universiteta. Fizika 

UDC 519.2:534 

THEORETICAL AND MATHEMATICAL PHYSICS 

FOUNDATIONS OF POSSIBILITY THEORY. 
METHODS OF OPTIMAL ESTIMATION AND DECISION MAKING 

4. MAXIMAL EXTENSION OF POSSIBILITY 

Yu. P. Pyt'ev 

It is shown that a possibility P(·): A -+ [O, 1] can always be extended from 
an arbitrary u-algebra A of subsets of X to the algebra 'P(X) of all subsets 
of X with preservation of all properties of the possibility, and that a measure 
p(•): .C(X)-+ [O, 1] specifying a possibility of fuzzy events can be extended with 
preservation of its properties to the class of all functions X -+ [O, 1]. 

INTRODUCTION 

Countability and measurability, which are fundamental mathematical notions determining applicability 
of mathematical probability theory to modeling of reality [1], play a substantially less significant role in 
possibility theory. It is shown below that a possibility P(·): A-+ [O, 1] can always be extended from an 
arbitrary u-algebra A of subsets of X to the algebra 1'(X) of all subsets of X with preservation of all its 
properties, and a measure p(·): .C(X)-+ [O, 1] specifying a possibility of fuzzy events can be extended witb 
preservation of properties to the class of all functions X-+ [O, 1]. This means that, in possibility theory, any 
subset of X can be considered an event (measurable set) and assigned a possibility: an arbitrary function 
µ(·): x-+ [O, 1] can be considered the characteristic function of the corresponding fuzzy event, and the value 
p(µ(·)) its possibility. As distinct from probability theory, in possibility theory, any, including uncountable, 
unions and intersections of events are events; in this respect, possibility theory is simpler than probability 
theory. However, as has already been mentioned in [2], the cost of this simplification is the loss of continuity: 
a possibility, being completely additive, is not a continuous function on 1'(X). 

In this work, we construct a (maximal) extension of a possibility P(·) to the algebra 'P(X) and of a 
measure p(·) to the class of all functions X-+ [O, 1]. In what follows, "Definition 4.2" means "Definition 2 
from [4]", a reference to formula (2.7) is a reference to formula (7) from [2], etc. 

1. EXTENSION OF A POSSIBILITY TO THE ALGEBRA 'P(X) OF ALL SUBSETS OF X 

There are at least two circumstances witnessing that the probability-theoretic scheme is not completely 
adequate in the possibility theory under consideration. First, unlike a probability, a countable-additive 
possibility is in general not continuous with respect to convergence of the sequence of events defined in 
item 3 of Theorem 2.2. Alternatively, the requirement of countable additivity not only fails to ensure the 
continuity of a possibility, but is also unnatural, because, in the case under consideration, the addition 
operation is defined so that it is possible to "add" any set of "terms" which need not be finite or countable. 

Let us show that, in the theory under consideration, a possibility can always be extended to the algebra 
'P(X) of all subsets of X with preservation of all its properties and can be specified by a distribution. For 
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this purpose, for each p E [a, 1], where a= inf P(A), we define the set 
AEA,A;t~ 

Sp= n A=X\ LJ A. 
AEA, AEA, 

P(X\A)'.SP P(A)'.SP 
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( 1) 

If a > 0, then only the empty set 0 E A satisfies the condition P(A) < a with A E A. It is then natural 
to extend the definition of Sp to p E [O, a) by setting Sp = X. The sets Sp with 0 :::; p :::; 1, possibly 
nonmeasurable, form a monotone family in the sense that if 0 :::; p:::; q :::; 1, then Sp :::J Sq, and it is assumed 
that Splp=l = 0 and Splp=O = X. In what follows, it is assumed that P(0) = 0. 

Definition 1. Suppose that B c X is an arbitrary set and 'D(B) = {p E [O, 1], Sp n B j 0}. Put 

P(B) _ { sup'D(B) if 'D(B) # 0, 
- 0 if 'D(B) = 0, B C X 

(2) 

and 
;:>(x) = P({x}), x EX. (3) 

Since 'D(B) = LJ 'D({x}) = LJ {pE [0, 1], x E Sp}, we have 
xEB xEB 

_ {sup;:>(x) if B j 0, 
P(B) = •EB 

0 if B = 0, B c X. 
(2') 

Let us show that the function P(·) of sets extends the possibility P(·) from the er-algebra A to the 
algebra 1'(X) ofall subsets of X; according to (2*), the function;:>(·) defined by (3) specifies the distribution 
of the possibility so extended. 

Theorem 1. 1. P(B), where BC X, is a possibility on the algebra 1'(X) of all subsets of X; i.e., 
for any A, B E 1'(X), 

A C B =;. P(A) :::; P(B) 

P(A U B) = max(P(A), P(B)) 

For any family Ai E 1'(X), j E J, P( LJ Ai)= supP(Ai)· 
jEJ jEJ 

(monotonicity), 

(additivity). 

2. For any B E 1'(X) the possibility P(B) is determined according to formulas (2*) and (3) by its 
distribution ;:>(x) specified by (3) for x EX, i.e., by its values on singletons from X. 

3. For any A EA, P(A) = P(A). 
Proof. 1. If A C B, then, obviously, 'D(A) c 'D(B) and, therefore, P(A) :::; P(B). Then, since 

'D(A U B) = 'D(A) U 'D(B), it follows that P(A U B) = sup'D(A U B) = max(sup'D(A),sup'D(B)) = 
max(P(A), P(B)). Finally, 

P(LJ Ai)= sup'D(LJ Ai)= supsup'D(Ai) = supP(Ai)· 
jEJ jE/ jE/ jE/ 

2. This assertion follows from (2), (3), and (2*). 
3. Suppose that A EA and P(A) = q > 0. If p::::: q, then, according to (2), Sp c X \A and, therefore, 

Sp (1 A= 0. It follows that 
P(A) = sup{pl Sp n A j 0} :::; q = P(A). (3') 

On the other hand, if p < q, then Sp n A # 0 because Sp = X \ LJ B and A ¢. LJ B. Let 
P(B)'.SP P(B)'.SP 

Pi :::; P2 :::; ... :::; Pn :::; ... , Pi < q, j = 1, 2, ... , and q = ,lim Pi· Then P(A) = sup{p I Sp n A j 0} 2:: 
J->OO 

sup {Pi I Sp1 n A j 0} = q = P(A). If P(A) = q = 0, then P(A) = 0 by (3*). • 
1'5_j'5_cx:J 

Remark 1. Let X be a locally compact Hausdorff topological space and ;:>( ·) : X _, [O, 1] be an upper 
semicontinuous function (distribution of possibility). Then P(·) defined as P(A) =sup ;:>(x) for nonempty 

•EA 
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A E 'P(X) and vanishing at the empty set (P(0) = 0) is a Choquet capacity (see, e.g., [3]). Indeed, P(·) is 
a Choquet capacity if the following conditions are fulfilled: 

(i) If Ai, A, E 'P(X) and A1 c A., then P(A1) :5 P(A2); 
(ii) If An E 'P(X) for n = 1, 2, ... , A1 C A2 C ... , and A= LJAn, then P(A.) t P(A) as n-+ oo; 

n 

(iii) If Kn are compact subsets of X for n = 1, 2, ... , K, :::J K2 :::J ••• , and K = nx., then P(Kn) .)_ 
n 

P(K) as n-+ oo. 
According to Theorem 1, P(·) has properties (i) and (ii). Let us show that sup cp(x) .)_ sup cp(x). 

xEK.. xEK 

Since cp(·) is upper semicontinuous and K. are compact, the set K,n = {x E Kn, cp(x) = sup cp(y)} is 
yEK., 

nonempty and compact for any n = 1, 2, .... Suppose that x; E K,; for i = 1, 2, ... and { x;.} is a convergent 

subsequence of {x;} c K 1 with~= lim x; •. Since cp(xi) 2: cp(x2 ) 2: ... , the sequence {l"(x.)} converges, 
•--+= 

and lim cp(x.) = lim cp(x;J = cp(~). Indeed, on the one hand, cp(x;.) 2: cp(~) for n = 1, 2, ... ; on the other 
n~oo n~oo 

hand, lim i"(x;J :5 i"(~) because I"(·) is upper semicontinuous. As cp(x;J 2: sup i"(x) for n = 1,2, ... ,we 
n~oo xEK 

have i"(~) 2: sup cp(x), and as ~EK;. for n = 1, 2, ... , we have~ EK; hence cp(~) S sup cp(x). Therefore, 
re EK :r:EK 

sup i"(x) =I"(~)= lim sup i"(x). 
xEK n-i-oo xEK., • 

The family Sp, 0 Sp S 1, specified by (1) determines a distribution i"(x) for x EX according to (3). 
Let us consider to which degree the distribution I"(·) determines initial family (1). In what follows, we 
assume that sup{p E [O, 1] Ip E 0} = 0 and use the following expression for the possibility P{-): P(A) = 
sup1J(A) = sup{p E [O, 1] I Sp n A# 0} for any A E 'P(X). 

Lemma 1. 1. For any p E [O, 1], S-v = {x EX, i"(x) > p} C Sp C {x EX, i"(x) 2: p} = s;. 
2. For any A E 'P(X), P_(A) = sup{p E [O, 1] I S-P n A# 0} = P(A) = sup{p E [O, 1] Is; n A# 

0} = P-(A). 
Proof. 1. For x E Sp, we have i"(x) = sup{q, x E Sq} 2: p; therefore, Sp C s;. If x E S-P• then 

sup{qjx E Sq} = cp(x) > p. Hence, there exists e > 0 such that q, = cp(x) - e > p and x E s •.. Since 
Sq. c Sp, we have x E Sp, i.e., S-p C Sp. 

6. 
2. We have i"-(x) = sup{p Ix Es;}= sup{p I cp(x) 2: p} = i"(x) = sup{p I cp(x) > p} = sup{p, x E 

S-p} ~ cp_(x) for x EX; therefore, P_(A) =sup cp_(x) = P(A) =sup cp-(x) = p-(A) for A E 'P(X). • 
xEA xEA 

Remark 2. The family Sp with p E [O, 1] defined with the use of the possibility P(·) by the formula 
Sp = X \ LJ A for 0 :5 p :5 1, which is similar to (1), gives the same values of the possibility if Sp 

AE'.P(X), 
P(A)~p 

is replaced by Sp in (2). Indeed, obviously, Sp C Sp because A C 'P(X) and Sp = X \ u 
AE'P(X), 

xEA,sup rp(x)$P 

= 

= X \ {x EX, cp(x) Sp}= {x EX, cp(x) > p} = S-p· Therefore, S-p C Sp C Sp Cs;, and, according to 
Lemma 1, the family Sp with 0 Sp S 1 in (2) gives the same values of P(·). • 

2. UNIQUENESS OF EXTENSION OF A POSSIBILITY 

Generally, a possibility p(·) admits different extensions to 'P(X). Indeed, suppose, for example, that 
= 

X = LJ A;, where A; n A; = 0 for i # j, i, j = 1, 2, ... , and A is the minimal o--algebra containing {A;}. 
;~1 

An extension of P(·) to 'P(X) is an arbitrary possibility P(·) satisfying the condition 

P(A;) = sup \O(x) = P(A;), 
:t'EA; 

j = 1,2, ... , (4) 

where \O(·): X-+ [O, 1] is the distribution of P(·). If A; is not a singleton from X, then condition (4) does 
not determine the distribution \O(x) for x EA; uniquely for j = 1, 2, .... 
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The extension P ( ·) developed ahove can be called maximal in the sense that 

P(B) :::: P(B), BE 'P(X) 

for any other extension fi(·). To prove this, it is useful to consider another representation of the distribution 
of P( ·), which is also of interest of its own. 

Lemma 2. Put 
cp,(x) = inf{P(A), A EA, x EA}, x EX. (5) 

Then cp,(x) = cp(x) for x EX, where the distribution cp(·) is defined by (3) and, therefore, 

P,(B) =sup cp,(x) = P(B) 
xEB 

for any nonempty B E 'P(X). 
Proof. Let us note x EX and take an arbitrary E > 0. According to (5), first, P(A) > cp,(x)-E =p. 

for any A EA containing x and, second, there exists A, EA such that it contains x and P(A,) :S cp,(x) + 
E = p'. According to definition (1), x ES., because x l/c LJ A, and x l/c Sp• because x E LJ A. 

AEA AEA 
P(A)~p. P(A)~p'A 

Since cp(x) = sup{p E [O, l] Ix E Sp}, we have cp,(x) - E :S cp(x) :S cp,(x) + E, and cp,(x) = cp(x) for x EX 
because f > 0 is arbitrary. • 

Lemma 3. Equality (2) determines a maximal extension PO of the possibility P(·) in the sense that 

P(B) 2: P(B), where BE 'P(X), for any other extension P(·). 
Proof. Let ;?(x) = P({x}) for x EX be the distribution of P(·). We show that ;?(x) :S cp(x) for 

x EX. If a singleton {;,} EA, then ;?(;,) = cp(;,); if{~} l/c A, then we consider a minimal A= A EA 
0 0 0 .... 0 .... o ,.._, 

containing x. In other words, x E A E A, and, for any A E A such that x E A, A C A. Since P(·) is 
monotone, we then have 

0 0 0 0 
cp(x) = cp,(x) = inf{P(A), A EA, xE A}= P(A). 

For any other point x E A, cp(x) = cp,(x) = cp(~) because A is minimal for each point thereof. As 

' ' P(A) =sup ;?(x), we have \&(x) :S cp(x) for x EA. • . 
XfA 

3. EXTENSION OF A POSSIBILITY OF FUZZY EVENTS 

In conclusion, we consider extension of a possibility p(f(·)) of fuzzy events specified by their 
characteristic functions JO E .C(X). Let :C(X) be the class of all functions JO defined on X and taking 
on values in R(p) where addition and multiplication operations (2.3) are defined. 

Definition 2. A function p(·) defined on C(X) and taking on values in R(p) is called the measure if 
it is linear in the sense of Definition 2.1 and, for any family'/;(·) E :C(X) with j E J, 

p(supf;(·)) =supp(!;(·)). 
iEJ iEJ 

(6) 

We say that the measure p(f(-)) for/(-) E Z(X) is a maximal extension of the measure p(f(·)) for 
f(·) E .C(X) if p(f(·)) = p(f(·)) for JO E .C(X) and, for any other extension ft(·), 

p(f(·)) 2: ft(/(·)), f E C(X). 

• By linearity of (2.7), p(·) does not decrease monotonically (2.9); therefore, P(inf / 1 (-)) :S p(f;(·)) :S 
jEJ 

p(f;(· )) :S p(sup f; (·) ), where i E J. Thus, generally, p(inf /;(-)) :S \nf p(f; (·)) :S sup p(f; (·)) :S p(sup f; (·) ). 
jEJ JEJ JEJ jEJ jEJ 
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Theorem 2. 1. An arbitrary measure p( ·) has the representation 

p(f(·)) = sup min(f(:z:), So(:z:)), /(·) E C(X), 
•EX 

where So(·) E C(X) is the distribution of the possibility P(·), 

P(A) = P{xA(·)) = sup\O(x), A E 'P(X), 
zEA 

and 
So(x) = p(o,(·)), x Ex, 

where {oy(·), y EX} is the family of the functions 

oy(x)={ol, x~y, xEX,yEX, 
' x_,_y, 

from C(X). 

11ol. 53, No.1 

(7) 

2. An arbitrary function JO E C(X) is integrable with respect to the possibility P(·) in the sense 
of Definition 4.2, p(f(·)) is its integral, and P(A) = P{xA(·)) for A E 'P(X); thus, there is a one-to-one 
correspondence between P(A), A E 'P(X), and p(f(·)), /(·) E :C(X). 

3. PO is a maximal extension of P(·) if and only ifp(·) is a maximal extension ofp(·). 
Proof. 1. For/(·) E :C(X), the "integral representation" 

f(x) ~sup min(oy(x), f(y)) 
yEX 

for x EX 

holds. By (6) and the linearity ofp(·), 

p(f0) =sup p(min(oy(·),f(y))) =sup min(f(y),p(o9 (·))) =sup min(f(y), \O(y)). 
yEX yEX yEX 

The proof of assertion 2 of Theorem 2 is the same as the proof of Theorem 4.3. Assertion 3 is evident . 

• 
Theorem 2 specifies a maximal extension p( ·) of a possibility p( ·) of fuzzy events specified by their 

characteristic functions from C(X) to the class of all fuzzy events with characteristic functions from the 
class :C(X) and gives a representation of the extended possibility p(·) in the form of integral (7) of the 
characteristic function of a fuzzy event/(·) E :C(X) with respect to the possibility P(·). 

Remark 3. Any function/(-) E C(X) has the representation 

f(x) = sup min(.X,x,,(x)) = sup min(a,x,,(x)), x EX, 
~0:$a:$1 0:$a:$1 

where Xa(·) and XaO are the characteristic functions of the sets A,,= {x EX, f(x) =a} and A,,= {x E 
X, f(x) :'.".a}, respectively. Property (6) of a measure and linearity (2.7) ofp(·) imply that 

p(f(·)) = sup min( a, P(A,,)) = sup min( a, P(A,,)). 
0:$a$1 0:$a$1 

The latter expression is known as the Sugeno integral which is defined in [5] on the class of (measurable) 
functions from C(X). 
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