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SPECTRAL PROBLEM FOR THE RADIAL SCHRODINGER EQUATION 
WITH CONFINING-TYPE POTENTIALS 
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A procedure based on the generalized integral transform method is applied 
to determining energy spectra for a large class of radial Schrodinger-type 
equations. This procedure is shown to be usefully employed in a number of 
known potentials. Moreover, it yields essentially new analytical results for such 
significant potentials as the Cornell potential important for the hadron physics. 

To find a solution of the spectral problem for the Schrodinger equation with spherical symmetric 
potentials is an important issue of the spectroscopy theory of complex chemical compounds and molecules, 
as well as of description of baryon resonances [1, 2] and quarkonium mesons [3, 4]. Although any rigorous 
theoretical justification is absent, the potential models can satisfactorily describe the mass spectra of 
quarkonium, charmonium and other systems. To model an interaction potential for these systems, the 
confining-type potentials are usually employed. The latter are exemplified by the Cornell potential with 
two terms, one describing the quarks Coulomb-type interaction, and the other correSponding to the string 
potential responsible for confinement. 

Energy spectrum calculation for the Schrodinger equation with various types of potentials is a long­
standing problem solved by various methods, e.g., by direct calculations under specified boundary conditions 
imposed on the wave functions, by variational methods, and by various modified combinations of analytical 
and numerical approaches. The quasiclassical method has been widely employed and well suited for a large 
class of quantum mechanics problems [5, 6]. A sort of an "intuitive" approach, discussed in [7], is of interest, 
which is presumably in close relation with a solution of the inverse scattering problem [8]. 

In the present paper, we developed further the method described in [9, 10] with special consideration 
of the asymptotic behavior of wave functions at large values of parameter r (which is equivalent to small 
momenta). Actually, this is a generalization of the integral transform method with a kernel of special form 
that provides proper asymptotic behavior of wave functions. As it was shown in [9-11], this approach proved 
to be rather effective in finding low-lying spectral levels. It should be noted that low-lying spectral levels are 
essential in studying baryon reSonances and quarkonium mesons. This allows us to hope that our method 
may usefully be employed in nuclear spectroscopy problems. 

On this basis, we propose here an exact algorithm to reduce the radial Schrodinger equation to the 
algebraic eigenvalue problem. Solving this problem by the successive approximation method can yield the 
initial equation spectrum. The procedure proves to be rather simple both for analytical calculations and 
numerical computation and makes it possible to get some approximate analytical formulas for the lower 
energy levels that may be employed in discussing qualitative behavior of the spectrum of the model system 
in question. We notice that the obtained perturbation theory is convergent. The result is of special interest 
since it points to legitimacy of developed method and its possible application to solving concrete problems. 
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As an example, we consider spherical-symmetric "confining" potentials of the form 

Uk(r) = a2rk - Z/r, a> 0, k = 1, 2, (1) 

important for the hadron physics applications. 
Development of rapidly convergent procedure for the perturbation theory under algebraic symmetry 

is described in [9]. In the present paper, the method is applied to the case of potentials {l). 
We consider the radial part of the Schrodinger equation in the form 

[- ::2 + Ueff (r)] R(r) = .XR(r). (2) 

Let the solution's complete wave function include, along with a radial part, a standard angular function 

Rn (r) 
Wnlm (r, t) = --Vim (8, '!') · 

r 

In this case, the effective potential in (2) takes the well-known form, 

l(l + 1) 
Ueff (r) = 2 + Uk(r). 

r 

(3) 

(4) 

If the potential Uk(r) does not contain any negative-power terms higher than r- 1 (such as in (1)), then 
the first term in (4) will determine the radial wave function behavior, R(r) - r 1+1 , at the origin. Making 
substitution R(r) - r 1+1 · F (r), where F (0) =/- O, we write the obtained equation in the following form 
convenient for further transformations: 

F" + _: (l + 1) F' + [.X - U (r)] F = O. 
r 

(5) 

1. SPECTRAL PROBLEM FOR THE CORNELL POTENTIAL 

In potential (1) linear in r, the constant a2 > 0 can be eliminated by simultaneous change of variables 
in (5), r ....+ a- 213r, and introduction of dimensionless combinations of parameters, ,\* = ,\a-4/ 3 , z* = 
za- 213 • A solution of (5) is sought in the form of the series 

_ (_:) ••/3 r (2•+;1+o) 
fk- 3 r( 41t5) · (6) 

The coefficients fk are chosen' for symmetrization of the Jacobi matrix with coefficients ak and proper 
asymptotic behavior of the wave function at infinity, R (r) - exp [-(2/3)r312], which in this case coincides 
with the asymptotics of the well-known Airy function. Moreover, the chosen form of coefficients allows one 
to find a proper kernel of the generalized Laplace transform (Mittag-Leffler transform). Substituting (6) 
into (5), we get the following recurrent relation: 

(k+2)ak+2-(k+2l+ ~) ak-1 

(_:)'i3
_::_B(2k+41+6.!) (_:)-•/

3 
.X' (2k+4l+6._~) _ 0 + 3 r(!) 3 '3 ak+i+ 3 r(-!)B 3 ' 3 ak-. 

(7) 

00 

Introducing the generating function <P (w) = I; akw2k/3 transforms (7) into the integro-differential equation 
k=O 

[(1-w2) <P' - 41 +5 w<P] + _:::__ (_:)4/3 w-1/31 + .X' (_:)2/3 w•l3J' = 0 (8) 
a r G) 3 r (-!) 3 ' 
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where 
1 

I { w) = f dt · t(4'+1l/3 (1 - tr 2
/

3 
ii> (wt), 

0 
1 

r (w) = f dt. t(4l+3)/3 (1 - t)-4
/

3 ii> (wt). 

0 

Isolating explicitly the function pole singularity ii> (w) = (1 - w2)-(•l-s)/G H (w) at w = 1, where H (w) = 
:z:( 41+ 5)/6 (1 - x)(- 4

l+
2l/3 A (x), and carrying out conformal mapping of the complex plane w onto the unit 

circle x = 
1

1 
- w give the following equation for a new unknown function A (:z::): 
+w 

-I [41 + 5 41 - 9 i-_ 22
/

3z• -2/3 ).• , 
x(l-x)A + --+--x A- 413 {') (1-x) I(x)+ 213 213 ( ')I (x). 

6 6 3 r 3 2 3 r - 3 
(9) 

Here the integrals I and I' are related to the function A ( x) hy the transformations 

/

1 

( ")-2/3_ I(x)= (l-u)u- 2!3 1-~ A(u)du, 

• 1 

I 5/3 4/3 ( x )-4
/

3 
-I' (x) = (1- u) u- 1- ~ A(u)du . 

• 
According to the general theory [9, 12], required asymptotic behavior of the wave function is realized 

only if x = 0 is a regular point of the function X(:z::). In this case these solutions can be sought as a series 
in nonnegative powers of x, 

00 

(10) 
k=O 

Calculating I and I' with the help of the direct and inverse Mellin integral transform results in the following 
recurrent relation for the coefficients Ak: 

(11) 

Here 

F. =~~cm[r(n-m+j)][r(m+j)][r(k-m+~)][ r(fl ] 
n• ni ~ • r Ul r Cil r Gl r (k - m + ~l · 

-~[ rG) ][r(n+il] [r(k-n-l)] 
Gnk-n! r(k-n+i) r(i) r(-l) 

are the semi-infinite matrices, X = 5. 2- 5/ 3 • 3-2/ 3 . a-4/ 3 .).. r (j) /r (~) and z = 2-•/332i 3a-2i 3z/r (~) 
are the parameters. Then we continue seeking the approximate energy eigenvalues An by introducing a 
cutoff on the dimension of matrices F, G up to (N + 1) x (N + 1), where N = O, 1, 2, .... The resulting 
N + 1 eigenvalues An, n = 0, 1, 2, ... , N, define positions of the spectral problem first levels. Larger N 
give smaller errors. In this case, the first levels accuracy is considerably higher. 

We illustrate the convergence rate of the above procedure on an example of exactly solvable problem. 
In a particular case of z = 0 and I = O, the spectrum eigenvalues for the spherical linear-type potential 
Uetr =rare obtained from expression (11). As is well known, they coincide with the corresponding zeros of 
the Airy function [12]. In the second iteration (N = 1), the approximate value of the ground state energy, 
>.o (N = 1) = 2.3377, differs from the exact one {the first zero of the Airy function), >.3x~t = 2.3381, by 
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0.017%. We notice, however, that for large values of z higher approximations in N should be used. The 
above-mentioned function of parameters a and z is yet qualitatively correctly reproduced even at N = O, 1, 2. 
For instance, at N = 0, the radial ground state for the potential of the given type is: 

Ai:,=0l = 1.742a4 i 3 (1 + ~) - 2.415a213z. (12) 

At N = 11 two sets of levels corresponding to the ground and the first excited radial state are obtained, 

where 

13 157 172 
q = 181- 168:z+ 144' 

x{N=l) __ ID 
O,l -q V4' 

-(N=l) ID 
Al,I =q+y4• 

D _ 2 _ (31 1 113 _ ~z) (!_ 77 _ 35:z) (_!_I ~ _ ~z) (491 ~ _ !_:z). 
4 - q 36 + 144 12 121 + 48 42 + 12 + 48 42 36 + 144 12 

(13) 

At N = 2, solutions of the cubic equation correspond to the three radial quantum numbers, 0, 1, and 2. 
It should be mentioned that satisfactory accuracy of the above analytical expressions can be obtained 

in the limited range of parameters z < Zmax (N), a< Gmax (N), where the boundary values increase with 
the cutoff index of infinite matrix N. The boundary values can be estimated within the specified error only 
numerically. Convergence of this method is determined by the initial differential operator compactness, 
and its rate is high enough for carrying out numerical calculations without application of any substantial 
computer resources. 

2. SPECTRAL PROBLEM FOR POTENTIAL U2(R) 

As in the previous case, the coefficient at the leading power of r of potential U2 ( r) can be eliminated 
by the substitution r-+ r/,ja, z· = z;,;a, A.= Aja. 

Analogous arguments easily lead to an equation similar to (9), 

-o-1 [(I 3 A) (I 3 .A) 1- 1 :z: (1 - :z:) A + - + - - - + - - - - - x A= - z I (x) 
244 244 2, 

(14) 

/

1 
( ")-1/3_ I(x)= u- 1!2 1-~ A(u)du, 

z· 
:z-~~--- v'2r (~), 

00 

and the recurrent relation for the expansion coefficients of the function 7i. (:z:) = I; A.x• takes the form 
k=O 

( 
l 3 A) ( I 1 A) 00 

n + - + - - - An - n - - - - - - An-1 = Z L: FnkAk, 
2 4 4 2 4 4 k=O 

1 [r(n+~)] [ 1 ] 
Fnk = 2n! r 0) k - n + ! . 

(15) 

In particular, at z = O, formula (15) reproduces exactly the spectrum of an ordinary spherical-symmetric 
harmonic oscillator, An = (4n + 21 + 3) a = 2a(Nm + 3/2), where Nm is the principal quantum number. 
Hence the zero approximation for arbitrary z gives 

(N=O) ff.a A0 1 = a (21 + 3) - -z. 
' 1' 

(16) 

The results obtained can be compared with the experimental charmonium and bottomonium spectra. 
Basing on this comparison, the running coupling constant can be determined. Preliminary estimates show 
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that, in contrast to other models which need several variables to establish a correspondence between the 
SchrOdinger equation spectra and parameters, the present calculations need only a single parameter, the 
running coupling constant. Thus we hope that the proposed technique can also be applied lo calculations 
with actual systems. 

In conclusion, the authors express their gratitude to A.I. Aptekarev, A.V. Borisov, V.Ch. Zhukovskii, 
N.N. Nekhoroshev, E.T. Shavgulidze, and R.N. Fa.ustov for helpful discussions and comments. 
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