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Nonexponential solutions to one-dimensional nonlinear SchrOdinger-type equa
tions of special form derived by the quadrature method are studied. For the 
first time examples of analytic solutions to some types of these equations are 
given. 

Solutions to nonlinear Schrodinger-type equations (NSE) of the form 

.Mt i!2if! 
,_ = -- + F{l'fll)'fl at 8x2 

were discussed in [1, 2}. Particular solutions of such nonlinear equations are described in many publications, 
including reviews (3, 4]. It should be pointed out that three clearly defined approaches are used for studying 
nonlinear equations of this type: 

(a) investigating nonlinear effects in one-dimensional systems which are produc~d from the NSE in the 
search for solutions of special form; 

(b) finding solutions by the inverse problem method; 
(c) finding integral transformations which reduce the NSE to an algebraic problem or to a known class 

of differential equations. 
In the present paper, as in (1, 2], we follow the first approach. This is justified by the possibility of 

reducing the NSE to a one-dimensional differential equation. The structure of the equation that arises in 
this approach is similar to those that appear during the solution of one-dimensional problems in classical 
mechanics. Despite the apparent simplicity of the equations produced and the existence of a complete 
mathematical theory that allows one to make some general statements on the character of their solutions [5], 
we describe here some physically interesting examples. Such problems are important because some recent 
models include polynomial potentials of degree higher than the traditionally employed fourth degree, or 
logarithmic factors. They might arise in solid state physics when defects of various nature are taken into 
account (6], and also in advan~ed supersymmetrical models of the field theory (7]. With regard to these 
considerations, we discuss some particular NSE solutions. However, in this discussion, the proposed approach 
is general and can successfully be applied to other types of effective potential. 

We used the quadrature method to find solutions of the special form 

ifl(x, t) = exp{ iJt + ipz }y(z) 

describing the propagation of nonspreading packets (solitary waves), where z = x-Vt is the phase, p = V /2, 
and J is a real number. In this approach, the solutions' behavior is analyzed by exploring the effective 
potential 

U(y) = U(Eo, IYI) = Eoy2 
- 2 I F(lyl)ydy, Eo = V 2 /4 - s, 
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of the relevant ordinary differential equation 

y,, + Eoy - F(lyl)y = 0. 

11ol. 53, No.1 

Note that this method does not allow one to distinguish solitary waves from solitons which retain their 
structure when interacting with one another, because such a problem cannot be stated in the quadrature 
method. Instead, one should employ the method of inverse scattering problem [8, 9], which is not available 
for the NSE discussed therein. Therefore, for brevity, any solutions in the form of solitary waves obtained 
by the quadrature method will be referred to as solitons, kinks, oscillation or unstable NSE solutions. 

Within this approach, the soliton-type solutions correspond to the motion of the imaging point between 
the local maximum of the effective potential (the stopping point) and the turning point. The kink-type 
solutions correspond to the imaging point's motion between two adjacent stopping points. The oscillation 
solutions correspond to the point's motion between two turning points. The unstable solutions are infinite, 
either limited by one singular point or having no singular points [2]. 

Let the equation E - U(y) = 0 have a solution for two real values, 0 '.':: y1 < y2, and U(y) < E in the 
variable domain Y1 < y < Y2· Let the effective potential U(y) be presented by 

U(y) = (IYI - Y1)" (IYI - Y2t f(lyl) + E, 

where f(lyl) is a function (usually a polynomial) nonvanishing for Y1 < y < Y2· 
Consider the integer values ofµ and v. At v = 0, the motion is infinite and corresponds to unstable 

NSE solutions. The values µ = 11 = 1 correspond to oscillation solutions similar to mechanical motion 
between two turning points. A linearized (wavelike) NSE solution is valid in this case for the motion around 
the potential minimum. 

The case µ = 2, 11 = 1 (as well as µ = 1 and 11 = 2) corresponds to an ordinary soliton NSE solution 
which decays exponentially at large phase times. For 1 '.':: 11 < 2, the point y2 is reached in a finite phase 
time, then the imaging point velocity changes its sign. That is why such points are referred to as turning 
points. For v ~ 2, it is impossible to reach the domain boundary Y2 in a finite phase time. Such points are 
referred to as stopping points. 

Atµ= 3 and 11 = 1, the effective potential U(y) has an inflection at y = Yl· In this case, the motion in 
the vicinity of the singular point y = y1 occurs by a power law. Let us call the corresponding NSE solution 
a weak soliton. The asymptotic behavior of a weak soliton at large phase times (i.e., near the turning point} 
has the form w - (z - zo)-2 • 

We consider an example of the separatrix solution to the NSE 

.aw a2 ;v ( a) ,_ = -- - 21311111 11111- - 111 
&t i)x2 4 ' J3 > 0, 

for which the effective potential of the corresponding ordinary differential equation is U(y) = J3lyl3 (1YI -
1) + EQY2 • Let us select the problem parameter Eo such that U(y) contains no quadratic term in y. The 
constant E = 0 corresponds to the separatrix. The quadrature yields an NSE solution in the form of two 
weak solitons (left-hand and right-hand) differring in their sign: 

( J3 )-' w(x, t) = 'f 1 + 4(z - zo) 2 exp{i(px - et)}, e =pz. 

The turning points here correspond to the phase time z - zo = 0. 
A similar power-function behavior is also inherent in other weak solitons for which µ > 2 and v = 1, 

An approximate shape of the potential U(y) and the phase pattern for weak solitons are shown in 
Fig. 1. 

It should specifically be pointed out that as y --+ O, weak solitons satisfy y, - IYl"/2 (µ > 2), in 
contrast to ordinary solitons for which y, - IYI as y--+ 0. At µ = 11 = 2 the separatrix NSE solutions tend 
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exponentially to yi, Y2 (or to -y1 , -y2 ) as the phase time increases. These are the right- and left-hand 
exponential kinks. 

For l>Jil > Y2' there is an unstable NSE solution on the separatrix E = U(y,) = U(y2). At large phase 
times it behaves as l>Jil - lz - zo1-1. 

Note that if U - E = 0 only at one point y1 > O, then, by virtue of symmetry (i.e., evenness) of the 
potential U(y), this equality also holds at the point y = -y1 < 0. Then at µ = 1 the points y = ±y1 are 
turning points, and the NSE solution has an oscillating character if U(y) < E for 0 < IYI < y,. 

Forµ 2: 2 (v = 0), there is an NSE solution in the form of a kink for which 1-lil :S Yl· In this case, the 
effective potential U(y) can be presented as U(y) = (lyl - Yi)µ f(y), where U(y) < U(y1) for 0 < IYI < y,. 
We notice that for an arbitrary effective potential the number of soliton solutions is even, while the number 
of kink solutions may be both even and odd. 

At µ = 3, v = 2, the NSE has a solution in the form of weak (power-function) right- and left-hand 
kinks, similarly to the case ofµ= 3, v = 1 for solitons. For y-+ y,, Yz - IY -Y113i 2

• 

An approximate shape of the potential and the phase pattern are shown in Fig. 2. 

Fig. 1 Fig. 2 

Weak solitons. Weak (power-function) kinks. 

At l>Jil > Y2' there is also an unstable separatix NSE solution with the behavior l>Jil - IY-Y1l-2
/

3 at 
large phase times. 

At µ = 3, v = 0, the NSE has a solution in the form of a single weak (power-function) kink. For 
example, for the potential U(y) = f3(y2 -1)3 the problem parameter (i.e., the coefficient at y2) is Eo = 3(3, 
and the corresponding NSE has the form 

On the separatrix (at E = (3), the NSE has a solution in the form of a single weak kink 

(3112(z - zo) 
w(x, t) = exp{ i(px - £t)}, £ = Eo + p2

• yl + f3(z - zo) 2 

The potential and phase pattern are shown in Fig. 3. 
These examples confirm that the behavior of NSE solutions is determined by the nature of singular 

points, or, more precisely, by the value of the second derivative U"(y) of the effective potential at these 
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points. If U"(y) = 0 at a singular point, then this case corresponds to a weak (power-function) behavior 
of soliton or kink NSE solutions. However, the cases where U"(y) 4- -oo at a singular point-are possible. 
Then the imaging point will approach the singular point at high velocity, which corresponds to a faster-than
exponential decay of I-WI at large phase times. Let us consider some examples in support of the abovesaid. 

Consider a potential of the form U(y) = U(ly\) = (Eo -[3)y2 + 2[3y2 In IYI ([3 > 0) which has a peculiar 
singularity at y = 0: U(O) = 0, U'(O) = 0, and the potential's second derivative behaves logarithmically at 
zero. This potential corresponds to the following NSE: 

.aw a2w 
,_ = -- - 2[3lJi In \lli\. 

at ax2 

In the vicinity of y = O, d': - -ln'/2 l~I' which discerns this case from ordinary and weak solitons, 

where ddy, - \y\(µ- 2)/2 as y -+ 0 (µ > 2). The exact NSE solutions on the separatrix (E = 0) for an 
y -

arbitrary value of Eo, which have the form [10] 

where e = Eo + p2 , will be called the (left- and right-hand) supersolitons. The potential and phase pattern 
are shown in Fig. 4. 

Fig. 3 

Solitary weak kink. 

Fig. 4 

Supersolitons. 

Note that there exist the NSEs whose solutions decay faster than supersolitons at large phase times. 
In such cases, the second derivative of the effective potential at y = 0 must vary faster than In \YI as y -+ 0. 
For instance, if the effective potential U(y) has the shape similar to that shown in Fig. 4, but in the vicinity 
of Y = 0 it behaves as U(y) - -y2 ln2

-
2/n (ly\-1), n > 2, then the separatrix (E = 0) NSE solution at large 

phase times has the asymptotics 

\lJil - exp (--y(z - zo)"), ')' > 0. 

In conclusion, let us again draw the reader's attention to the terminology employed. Although we use, 
for brevity, the terms "soliton" and "kink" for solitary waves, all the weak (power-function) solutions and 
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supersolitons discussed here are just solitary waves. This conclusion follows from the fact that the method of 
inverse scattering problem employed for finding soliton solutions to nonlinear equations leads automatically 
to exponential decay of ncmreflective potentials at infinity [11]. 

We have demonstrated the possibility of the existence of new solution types . for one-dimensional 
NSEs. Probably, these solutions may arise in description of domain walls in ferromagnet models or spin 
glasses. Then, it would be interesting to look for actual manifestations of these solutions in real physical 
experiments. Their mathematical structure allows for this, thus making the solutions very interesting from 
the mathematical standpoint and showing promise for observation in real nature. 
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