
Moscow University 
Physics Bulletin 
Vol. 53, No.1, pp.19-23, 1998 

Vestnik Moskovskogo 
Uni-versiteta. Fizika 

UDC 530.1 

DIMENSIONAL RENORMALIZATION WITHOUT NONINTEGER 
DIMENSIONS 

D. A. Slavnov 

A renormalization scheme for generating functionals of Green functions is 
obtained. The suggested scheme is a version of the dimensional renormalization, 
but it uses finite integer positive dimensions only. 

It is known that the presently popular renormalization scheme based on dimensional regularization [1] 
involves significant difficulties when applied to chiral and supersymmetric models. This is not surprising, 
because these models essentially use dimensional properties of the coordinate and momentum spaces. It is 
still unclear how to consistently formulate such properties in spaces formally having noninteger dimensions. 

In this paper, we try to reformulate the dimensional renormalization, though, first, retaining its 
strong points such as a comparatively simple mathematical apparatus, and 1 second, eliminating non-integer 
dimensions. 

The problem is considered within the renormalization scheme that we call the ~renormalization along 
lines" [2]. The essence of the scheme is as follows. The Feynman amplitude 9,((p)~"') that corresponds to 
a diagram Gs can formally be represented as 

9, ( (p)~"') = f dp D1(P) • Q,11((p)~"', p, -p). ( 1) 

Here 9,11 is the Feynman amplitude corresponding to the diagram G,11 that is obtained from the diagram 
Gs by breaking the inner line l. D1(p) is the propagator corresponding to this line,* denotes the convolution 
of this propagator with respect to indices omitted in (1) and the amplitudes 9,11; (p)~"' is the set of all 
external momenta of the diagram G,; and (p)~"',p, -pis the same set for the diagram G,11· 

Unfortunately, (1) does not always have a clear mathematical meaning, because the integral in the 
right-hand side may diverge due to ultraviolet divergences. 

In [2], multiplication by the propagator D1(P), convolution with respect to its indices, and integration 
with respect to momentum p are considered as a formal definition of the unique linear operator 

f dpD1(p) * ... (2) 

which acts on the 9.11 amplitude. If the integral in the right-hand side of (1) diverges, operator (2) can be 
replaced by its linear extension which is somewhat conventionally written as 

f dµ.(p) D1(p) .•. • (3) 

The conventionality arises because the "renormalized integration" J dµ.(p) ... introduced in (3) must include 
a certain subtraction procedure, and we cannot require that the measure µ be positive definite. 
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It is shown in [2] that if such an extension exists, then the formula 

g,((p)~"') = IL.1- 1 I dµ(p) D1(p) E g,11((p)~"',p, -p) 
lEG. 

vol. 531 No. 1 

(4) 

recursively specifies the amplitude g,((p)~"'), and this amplitude coincides with the renormalized Feynman 
amplitude constructed by applying the Bogolyubov-Parasyuk R-operation [3] with a certain fixation in the 
final renormalization. 

Formula (4) is written under the assumption that all lines (propagators) in the model are distributed 
over a finite number of ordered types: the first, the second, ... , the N-th type. Partition according to types 
can be arbitrary but the same for all diagrams and subdiagrams. For example, the first type may include 
the propagators of all fermion fields, the second one, of electromagnetic fields, and the third one, of all other 
fields. The summation in the right-hand side of (4) is carried out over all lines l of a certain type which are 
inner for the diagram G,. It is assumed that the amplitudes Q,;1 are obtained similarly, and the summation 
is performed over the lines of similar type if they exist in the G,;1 diagram; otherwise, the summation is 
performed over the preceding-type lines. 

Let us now obtain an analogue of formula (4) for Green functions, or, to be more precise, for genera.ting 
functionals Z(j) of Green functions. In what follows, it is more convenient to reason assuming that the 
space of momenta is endowed with the Euclidean metric. 

Let the system dynamics be described by the Euclidean action 

N 

SE('P) = EI.i?('P) + WE('P) (5) 
n=l 

which includes both physical and wind fields contributions and, if necessary, the terms that fix gauge. The 
set <p of all fields is partitioned into N types, 

n= 1, ... ,N. 

Here, the subscript u labels the fields of one type, which may be different or conjugate. Each term Ii?('P) in 
the right-hand side of (5) depends only on the type-n fields, is quadratic with respect to these fields, and, 
under quantization, gives the relevant Euclidean propagator, 

As is known, the generating functional can formally be represented as 

Z(j) = N-
1 

exp {-w (:j)} exp { ~ j dpE t,~j:(p)D:.(P)Ej;(-p)}, (6) 

where N is the normalizing factor and j;:(p) are the flows; variation of the Z(j) functional with respect to 
these flows gives the corresponding Green functions. We multiply the right-hand side of (6) by CE(j, ip)l~=o, 
where 

CE(j, ip) =exp {t, j dpE ~j:(p)ip:(p)}, 
perform variation with respect to j, and finally replace j by variation with respect to <p. As a result, (6) takes 
the form 

Z(j) =N-
1 Il exp{~!dPELo ~( )D:.(v)E 0 ·~- )}exp{-WE(ip)}CE(j,ip)I =o· (7) 

n=l u,v 'Pu P 'Pv P If 

Of course, (7) cannot be applied to finding Green functions in practice because the integrals with 
respect to p in (7) may diverge. However, it is easy to guess how this formula should be corrected. The 
linear operator 

(8) 
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formally adds one additional inner line of type n to each Green function. For Feynman amplitudes, this 
is made with the use of operator (2) by formula (1). To remove divergences in (1), we should replace 
operator (2) by its linear extension (3). Similarly, to remove divergences in (7), we should replace operator (8) 
by its linear extension 

(9) 

Formula (7) then becomes 

Z(j} = N-' exp{~N /2} ... exp{~' /2} exp{-WE(cp)}CE(j, cp)ll'=o. (10) 

Formula (10} is an analogue of ( 4). However, (10) is not recursive and does not feature forced symmetrization 
with respect to inner lines since symmetrization is automatically performed. 

The generating functional for renormalized Green functions can actually be obtained with the use 
of (10} by developing the operation J dµ(p) of "renormalized integration" included in (9) (and in (4)). To this 
end, we first apply the procedure described in the so-called "renormalization with respect to asymptotics". 
Its initial version was suggested in [4] where the space of momenta was assumed four-dimensional. Later, it 
was however found that such a procedure became ambiguous when applied to diagrams with a sufficiently 
large number of external momenta. This shortcoming was removed in [5] where the second, improved 
version of the procedure was described. The improvement was made at a fairly high cost of using, i.e., 
momentum spaces of dimensions other than four at intermediate stages. This manifests explicitly an analogy 
to dimensional regularization. However, unlike dimensional regularization, regularization with respect to 
asymptotics involves integer dimensions only, which may be made all even. For diagrams of finite orders 
with respect to the coupling constant, finite dimensions are sufficient. 

The procedure for constructing the operation of renormalized integration is based on the theorem 
proved in [5]. 

Suppose that (i) p, k,, and k;, where i,j = l,. .. ,r, are the vectors in the 2(-dimensional (( 2:: 2) 
space; (ii) in the space of dimension d (r ::; d < 2(), all scalars p2, pk;, and k;k; are independent; and 
(iii) F(p2,pk;, k;k;) is a scalar function of scalar arguments and is absolutely integrable over a compact 
domain and can be presented as 

F(p2, pk;, k;k;) = F1(p2
, pk;, k;k;) + F2(P2, pk;, k;k; ), (11) 

where F1 is absolutely integrable in the compact domain; (p2) 2 F1 decreases as IPI --t oo, and (p2 }2 F2 is a 
polynomial in p2, pk;, and In p2. Then in the formula 

= ( 2 

iJ>(k;k;,&} = (-1}'(µ 2
)-',,

2-(+<r-1 {&) j d2'p j dw 2(w 2)'-' ( 0~2 ) - U(w}'PF(p2,pk;,k;k;) (12} 
• 0 

all integrals converge absolutely; iJ> does not depend on ( if 2( > d and is a scalar function of independent 
scalar arguments k;k; and an analytic function of& in the domain 0 :S Ree< 1 with possible poles at & = O; 
r is the gamma function; µ is the mass parameter; and 'P and u are the operators defined by 

'PF= Fi, U F1(p2 ,pk;, k;k;} = F1(p2 + w2,pk;, k;k;). 

In what follows, we restrict our consideration to models with scalar fields. Vector and spinor fields 
will be considered elsewhere. The Weinberg theorem [6] and its generalization [7] imply that, in scalar 
models, the renormalized Green functions and the Feynman amplitudes multiplied by the propagator D1 (p) 
are either functions of type (11) or functions (11) multiplied by delta functions of linear combinations of 
momenta p and k;. The case where the delta-function argument contains the integration momentum pis 
trivial, for the integral with respect to p then converges and operators (2) and (8) should not be extended. 
In the rest cases, renormalized integration can be defined by the formula 

= ( 2 j dµ(p) ... = .C(& .f. 0)(-1)'(µ2)-',,2-C+•r-1(&) j d2'p j dw 2 (w2)'-' (
0

:
2

) - U(w)'P .•. (13} 

0 
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Here C(c .J.. 0) is the operation of Laurent series expansion in£ with preservation of a single term of the 
order £0 • 

Formula (13) closely resembles the integration operation in the space of noninteger dimension 2( + 2£. 
However, (13) possesses two advantages. First, the space of momenta p has the integer dimension 2( which 
facilitates substantially an analysis of the Green functions symmetry properties where the space dimension 
is essential. Second, the integration final result does not depend on ( for sufficiently large ( since, e.g., 
in (13), the 2(-dimensional integration with respect top and the (( - 2)-fold differentiation with respect 
to w2 partially compensate each other. 

At the same time, (13) differs unfavorably from the similar integration formula in spaces of noninteger 
dimensions in that it contains the 'P operator. For simple diagrams, it is fairly easy to decompose the 
integrand according to (11) and to explicitly construct the 'P operator, though for complex diagrams, this 
is rather difficult. 

For this reason, it is convenient to slightly transform (13) as follows: 

j dµ(p) F(p',pk;) = C(< t 0)(-l)<-2(µ2)-',,.2-<+,r-1(<) 

x lim / d2<p(p2 + µ2)-µ /~ dw 2 (w2)'-1 (~)(-' F(p2 + w2 ,pk;). 
µ- .2 (14) 

0 

Here, the (3 -+ 0 limit acts as an analytic continuation to zero from the values of (3 at which the integrals in 
wand p converge. In (14), it is assumed that the function F(p',pk;) admits expansion (11); its arguments 
kikj are omitted as inessential for the following consideration. 

We note that the operators U(w) and 'Pare absent in (14), though the U(w) operation is explicitly 
performed. The 'P operation is also present in (14) yet implicitly. To verify this statement we consider F 
as a function of vectors p and k; (i = 1, ... ,r) in a space S2( of dimension 2(. Suppose that the vectors 
k; lie in a subspace Sd of this space. Denote the projections of p onto the unit vectors of the space Sd by 
p,, ... , Pd and consider integral (14) of the functions F of the form 

Here, ao, a1, ... , ad are nonnegative integers and a > -li, where (i = 2 + a1 + ... + ad. At ao 0, 
integral (14) is explicitly evaluated and gives an expr.,;ion of the form 

where M includes all inessential factors, finite and independent of (3. Tending to the (3 -+ 0 limit, 
(15) vanishes. At <>o i= 0, integral (14) is evaluated by the <>o-fold differentiation of (15) with respect 
to a. As a result, we again obt3in zero. 

This implies that, for functions F of form (11), the right-hand side of (14) does not change under 
replacement of F by 'PF; therefore, we can assume that the 'P operator in the right-hand side of (14) is 
effectively present. 

We found that the result of application of (14) coincides with that obtained in the formalism of 
dimensional regularization in the version suggested by Wilson [8] (see also [9]). This can be demonstrated 
as follows. Since in the right-hand side of (14) F is subjected to differentiation, subtraction of first several 
terms of the Maclaurin expansion from F and integration by parts will not affect the result. Then the 
expression in the right-hand side of (14) after the operator C(c _j_ 0) will be rewritten as 

(16) 

where 

(17) 
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In Wilson's terminology, (17) is the definition of the integral of the function F(p2 + w2 ,pk;) over the 
"transverse space" ofnoninteger dimension 2(£-( + 2), and (16) defines J(o) as the integral of h(p) over 
the "longitudinal space" of positive integer dimension 2(. Equations (16) and (17) define jointly J(g) as the 
integral of F(p, k;) of noninteger dimension (4+ 2£). If desired, the well-developed technique for integration 
over spaces of noninteger dimensions can be used. It should only be borne in mind that each integration 
is performed at the specified f value ( f1, f2, etc.) Passage to physical dimensions requires sequentially 
applying the .C(£2 + 0), .C(£1 + 0), etc. operations to the integration results. 

The work was sponsored by the Russian Foundation for Basic Research (project no. 96-01-00726). 
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