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FINSLERIAN INVARIANT AND COORDINATE LENGTHS 
IN THE INERTIAL REFERENCE FRAME 

G.S. Asanov 

Basing on Finslerian invariances, temporal and spatial scales in inertial reference 
frames are defined. The respective Finslerian metric function is indicated, and 
the Finslerian deformation coefficients are calculated. 

Continuing our works [1-2] and using the notation adopted therein, we consider two reference frames 
So and S(v), applying the Finslerian kinematic transformations 

T = Hf0 )t + Hfl)"'' 

x = Hfo)t +Hf,)"'' y = H(z)Y' z = Hr3)z 

and their vector representation 
X P HP Q = (QJ"' , 

where XP = (T, X, Y, Z) refers to So and :z;P = (t, x, y, z) refers to S(v); P, Q, R = 0, 1, 2, 3. 
representation 

3 
"' (R) (R) Ypq(v) = L, qRHP (v)Hq (v) 
R=O 

is valid for the Finslerian metric tensor, where 

qp = (1, -1, -1, -1) 

( 1) 

{2) 

The tetrad 

(3) 

(4) 

in accordance with the space-time signature of the tensor gPQ" The explicit form of the components 
[H{q)(v),H~Q)(v)] is given in [1]. We shall restrict ourselves to the case j = 1. 

Kinematic transformations (1)-(2) have a pure-passive meaning, for they specify the variation rules 
for the vector components in going from So into S(v). Deformation of the proper scales (time and length 
primary standards) in the reference frame S(v) due to its motion relative to the reference frame So is 
a profound physical reason of these variations. This also implies that the four-dimensional vectors [XP] 
themselves remain unchanged, keeping their directions in the four-dimensional space-time. 

As in [1, 2], we start by stipulating that the x1- and X 1-axes of the reference frames So and S(v) 
are parallel and that the components v2 and v3 of the three-dimensional velocity vector v vanish. We 
shall adopt the notation v = v1 , so that S(v) moves along or opposite to the x1-axis for v > 0 or v < 0, 
respectively. 

The definition 
llXlls(v) ~ Ypq(v)XP XQ (5) 

specifies the XP vector coordinate length with respect to the reference frame S(v). Using transformations 
(2)-(4), we obtain 

llXlls(v) = (x0
)

2 
- lxl 2

, lxl = vf(x 1 ) 2 + (x2 )2 + (x3 ) 2 • (6) 
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Proposition 1. In S(v) the coordinate length of four-dimensional vectors is defined by ordinary 
pseudo-Euclidean rule (6) independent of Finslerian extension. 

In fact, this statement is a direct corollary of space-time signature (4) of the Fiuslerian metric tensor. 
It can also be said that the observation space in the reference frame S( v) is pseudo-Euclidean. Since 
gpq(v = O) = qpopq (an implication of equalities (3) and (4)), definition (6) coincides with the definition (5) 
used in the primary preferred reference frame So. This coincidence does not exist in the reference frame 
S(v) under the Finslerian treatment. 

At the same time, the S(v)-coordinate length (5) is not invariant under transformations (1)-(2) which 
are more general than the Lorentzian transformations. 

Now, let a Finslerian metric function F(T, X) exist, invariant under transformations (1)-(2), so that 

F(T, X) = F(t, x). (7) 

We call 
(8) 

the F-length of the four-dimensional vector (XP). According to (7), it is invariant under kinematic 
transformations (1)-(2). The latter invariance property makes it possible to use the F-length to coordinate 
and gauge the scales _!or time and space standards in different reference frames. 

Let (XP) and (XP) be two time-like vectors. They have, respectively, the components (x0 , 0, 0, 0) and 
(~0, O, 0, 0) in their proper reference frames. As to the physical sense of components :&0 and ~, they mean 
the proper time intervals. Since 

F(x0
, 0, O, 0) = x0 (9) 

(owing to invariance (7)), the equalities 

(10) 

hold true. 
Thus we see that the following is valid. 
Proposition 2. The Finslerian F-length of a time-like vector has a clear meaning: the length is equal 

to the proper time interval corresponding to the vector. In particular, as a consequence of (10), the equality 
of proper time intervals, x0 = ~, holds if and only if the corresponding F-lengths are equal, i.e., if 

The proper time is determined in terms of the Finslerian F-length (which differs from the S( v )
coordinate length). The identity 

F(T, 0) = T (12) 

is valid. 
Problem, What invariant meaning should be assigned to the concept of ''the line segments of equal 

length in the reference frame S(v) "? 
Let us consider in S(v) an intercept of x1-axis and denote its length by :z:. Geometrically, the intercept 

is represented by the four-dimensional vector :cP = (0, :c, O, 0). Transforming this vector from S(v) to So in 
accordance with rule (1), we get 

T = xv/V(v), X = :c(l - glvl)/V(v) (13) 

(formulas (59) from [1] are used). If F is the Finslerian metric function relating to this case, then the 
following equality should be valid: 

F(T, X) = xF(v, 1- glvl)/V(v). (14) 
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In its physical sense, the concept of invariant spatial length implies the relation 

x = F(T,X) 

(cf. (10)). In view of (15), relation (14) holds if and only if the function F obeys the identity 

F(v, 1 - glvi) = V(v). 

110!. 53, No.1 

(15) 

(16) 

The best agreement with conventional notions in So is achieved when the stipulations can be supplemented 
by the identity 

F(o, x) = 1x1, 1x1 = J(x' )2 + (X2)2 + (X3)2 (17) 

(F > 0 is meant). Conditions (17) and (12) are tantamount. 
In [1], invariance condition (7) has been used to derive the Finslerian metric function F(T, X) for 

the time-like vectors (XP), where IXl/ITI < g+· It is this function that should be used in (8)-(12). The 
derivation procedure of [1] is applicable to the case of space-like vectors (XP), i.e., for IXl/ITI > g+· 
Omitting the expositions, we write the eventual result obtained1 

Assuming 

F(T,X) = (IXl-Y+ITl)o+/2A(IXl-g-ITl)-•-/2A, 

IXl/ITI > 9+· 

F(T, X) = IXIZ(q), q = ITl/IXI < l/g+, 

we find the respective generating function 

Since Z(O) = 1, it follows from (19) that we can pose 
Proposition 3. Identity (17) is fulfilled under choice (18). 

(18) 

(19) 

(20) 

Does function (18} obey identity (14}? We verify: 1 - glvl - g±lvl = 1 - (g± + g)lvl = 1 + g'!'lvl 
(formula (36) of [1] is used). Therefore, the left-hand part in (14} should be equal to the function (1 + 
g_ lvl)Hf2A (1 + g+ lvl)-•-/2A. The latter function, however, is precisely V(v) (see (34} in [1]}. 

Thus we proved the validity of 
Proposition 4. With Finslerian metric function (18}, identity (14} holds over the range lvl < g+. 
Proposition 5. Finslerian metric function (18) defines the invariant space length in accordance 

with (15}. 

If (XP) and (XP} are two vectors in th_: (q < g+)-region, then the corresponding proper space-like 

lengths are equal if and only if F(XP} = F(XP), i.e., the condition of the form (11} is applicable to this 
case. Thus we have given a complete solution to the problem formulated above. 

It is also interesting to consider in S(v) a vector xp = (0, O, y, O}, that is, a length element y on the 
x2-axis in S(v). Using (1), we get Y = y/d(v). (d(v) is the function found in [1] and specified by formula (39) 
of [1].) According to (17}, F(O, Y} = Y. Whence we proved 

Proposition 6. If the direction of a segment is perpendicular to the three-dimensional vector v, then 
the F -invariant length of the segment is not deformed. 

Proposition 7. The S(v}-coordinate lengths x and y are equal in the F-invariant sense if and only if 

Y =d(v)x. (21) 

Conversely, the S( v )-invariant lengths x and y are equal in the reference frame S( v} at x = y, while 
the S(v)-coordinate lengthy suffers deformations (in accordance with the law y = d(v)Y, where d(v) ofa 1 in 
the Finslerian approach} as a result of S(v) reference frame motion with respect to the So reference frame. 
Thus Propositions 6 and 7 should be taken into account under thorough analysis of relevant relativistic 
experiments. 

Now we introduce the following 
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Definition. Let L be a three-dimensional surface in the reference frame S( v) formed by the ends of 
segments issuing from the origin {0,0,0,0} of S(v). If each point (x,y,z) EL relates to a fixed F-invariant 
length R, then L is called the surface of constant F-invariant length R in S(v) or, for brevity, the R-surface 
in S(v). 

The nonzero Finslerian parameter g leads to the effect that the R-surface ceases to be an (ordinary) 
sphere! 

To obtain the equation of the R-surface, we have to consider in S(v) the space-like vectors xp = 
(0, x, y, z), to perform their transformation in So in accordance with (1), and then to calculate q = ITl/IXI. 
This yields 

q = q(g; v, 9) = Iv cos 91/[Q(v) + (v 2 - glvl + g2v2) cos2 9] 112
• (22) 

We use the notation 
r = [:z:2 + y2 + z2j1/2, :z: = rcos9. (23) 

Substituting (22) into (20), we find from (19) 
Proposition 8. The equation of the R-surface in S(v) has the form r = r(9), where 

r(9) = RV( v)/[(1 - glvl)Z(q) cos 9]. (24) 

For q « 1, function (20) can be expanded as follows: 

1 2 1 3 1 ( 2 2) 4 ( ) Z(q) = 1 + gq - -q + -gq - - 1 + -g q + 0 5 
2 6 8 3 ' 

(25) 

2 1 
z2(q) = 1+2gq - q2 - 3gq' + 6g2q• + 0(5), (25a) 

so that accounting for only the lowest corrections in g in (19) yields the approximate expression 

F 2 (T, X) = X 2 
- T 2 + 2glXllTI, (26) 

which is the nearest Finslerian approximation for the ordinary Lorentzian length definition IXl 2 - T 2 of 
space-like vectors. Substituting (1) into (26) and using (23), we get the representation 

F 2 (T, X) = r 2 (9)[1- glvl(l - I cos91)2
], 

which implies that in this lowest approximation function (24) can be taken in the simple form 

r(9) = n(9)R, 
1 

n(9) = 1 + zglvl(l -1 cos91)2
• 

From (28) it follows directly that 

whence the function 

is 

Subject to the expression 

r(O) = R, n(O) = 1, 

r(9) = r(9 + 7r), 

u(9) ~r r (9 + i) /r(9) 

u(9) = 1 + ~glvl[2(1 cos91- I sin91) - cos2 9 + sin2 9)]. 

1 
c(9) = 1 + zglvl(l + cos2 9) 

for the light signal velocity (formula (49) in [2]), relation (28) entails 

n(9)/c(9) = 1- ulvll cos91, 

27 

(27) 

(28) 

(29) 

(30) 

{31) 

(32) 

(33) 

(34) 



Mo&cow Uni11er&ity 
Ph.y&ic1 Bulletin 

which reduces the function 
def 1 [ ( ")]-l p(8) = [c(8)t - u(8) c 8 + 2 

to 
p(8) =glvl(lsin81- lcos81) 

(relation (32) was used). The equality 

p(B) = -p(e+ ~) 
holds true together with 

c(8+rr) =c(8+2rr) = c(8), c (8+ 
3
;) =c(e+~). 

Now function (22) can be rewritten as 
q = lvcos8lc(8). 
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(35) 

(36) 

(37) 

(38) 

(39) 

Equality (30) points to "the mutual equivalence of opposite directions in the reference frame S(v)", so 
we have 

Proposition 9. Turning a segment by an angle 180' does not change the segment F-length. 
Relation (28) also implies that n(8) simulates "the deformation coefficient of an x 1-axis intercept as it 

turns by an angle 8". In other words, (28) and (29) lead to the validity of the following 
Proposition 10. Given an intercept of the x 1-axis. If x is its length, then turning the intercept by 

an angle 8 should change the F -length to 
s(8) = n(8)x. (40) 

The meaning of function (31) is also evident: the function presents the deformation value of the 
intercept under its turn by an angle goo. Thus we have proven 

Proposition 11. If a segment in S(v) makes an angle 8 with the x1-axis and has the length 1(8), then 
its turn by 9(!' changes its F-length to 1(6 + tr/2) in accordance with the equality 

1(8 + rr/2) = u(8)l(8). (41) 

We use the above formulas to consider the Michelson-Morley-type experiment. Let there be given in 
S(v) two mutually perpendicular segments of lengths l, and !2 arranged at angles e and 8 + "/2 to the 
x1-axis, respectively, and issuing from the center point C = (0, O, 0, 0) of S(v). Two light signals emerge 
from the point C, one signal follows along the !,-segment, reflects back at the end of the segment, and 
returns to the departure point C, while the other signal goes similar way along the segment !,. Clocks 
located at the point C show a value T for the difference between the respective times of travel. Thereupon 
the l1l2-set is turned through goo and the procedure is repeated yielding some new value r1. We have 

Ii l, 
r= --+ ....,,~-,-

c(8) c(8+7r) c(6+7r/2) c(B + 37r/2)' 

1 l,u(B) l,u(8) 
T = + -..,,,...--~'"..,,-,. 

c(e + 7r/2) c(8 + 37r/2) 
l2u(8 + "/2) 

c(8 + 7r) 
l2u(8 + 7r/2) 

c(8+2tr) · 

Applying formulas (35)-(38) yields the following simple relation: 

1 
2(r - r') = (I, + l2)p(8), p(8) = glvl(I sin Bl - I cos 81). 

In particular, 
1 { -(!, + l2)glvl at 8 = O, 
-(r-r')= 0 at 8=45°, 
2 (Ii+ l2)glvl at 8 = 90°. 

Thus the Finslerian effect features essential anisotropy, as shown by derived formulas (42)-(43). 
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The Finslerian function Z(q) (Eq. (20)) refers to the case of space-like vectors XP. Its counterpart 
for the case of time-like vectors XP is the function V v given by Eq. (34) in 1 . In the Riemannian 
(pseudo-Euclidean) limit, we have Z(q)1,~0 = 1- (T/IXl)2 and V(v)l,=o = 1- (IXl/T) 2 • 

The functions Z(q) and V(v) differ radically in the ways of expansion in their variables q « 1 and v « 1. 
Namely, the Finslerian corrections appear in the expansion of V(v) in v beginning only with the O(gv3

) 

terms, i.e., those of rather high order of smallness. We observe, however, that subject to (25), the lowest
order corrections O(gq) really contribute to the Z(q) expansion in g! This is the latter circumstance that 
led to the O(gv)-corrections in (26)-(36). The presence of such corrections and a sharp contrast in the 
approximation behavior of Z(q) and V(v) are the phenomena which could hardly be foreseen before the 
explicit form of Z(q) (20) had been found. The only common feature of considered expansions is that Z(q) 
does not involve corrections of the type O(gq2 ) and V(v) corrections of the type O(gv2 ). 

To sununarize: Propositions 1-11 proven above answer the question "What the Finslerian deformations of 
time- and space-standards should mean?" and simultaneously put forward succinct and sufficient 
analytic tools to compute the deformations. In particular, Propositions 9-11 indicate the existence of a 
whole host of O(gv )-level corrections which should be accounted for in the course of thorough Finslerian 
analysis of the known relativistic experiments (see, e.g., [3, 4]), or in forecasting new post-Lorentzian 
relativistic experiments. For example, simple Finslerian O(gv)-corrections (42)-(43) to the outcomes of 
Michelson-Morley-type experiments appear. Having explicit functions Z(q) and V(v) opens up straightforward 
ways for computing corrections of any order of smallness. 
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