РАДИОФИЗИКА УДК 621.385.6

ЭЛЕКТРОННАЯ СРЕДА В РЕЗОНАНСНОМ РЕЛЯТИВИСТСКОМ ГЕНЕРАТОРЕ ПОВЕРХНОСТНОЙ ВОЛНЫ

В. И. Канавец

(кафедра радиофизики)

Обсуждаются особенности взаимодействия электронного потока и электромагнитного поля в односекционном резонаторном релятивистском генераторе поверхностной волны в области частот π -вида.

В черенковских генераторах на сверхразмерных периодических волноводах, действующих в области частот π -вида ($\omega \cong \omega_{\pi}$), электронный поток находится в синхронизме с поверхностными волнами низшей моды волновода (моды E_{01}) [1–7]. При ограниченных энергиях электронов $E \leq 1$ МэВ эти источники излучения во многом аналогичны релятивистским генераторам поверхностной волны [1–5]. Процессы в генераторах зависят от условий отражения от концов секций периодического волновода и влияния электронной среды. Первый генератор поверхностной волны на моде E_{01} содержал одну секцию волновода, согласованную на концах с помощью плавных переходов [1, 2]. Последующие генераторы не включали согласователи и волны отражались от концов [2–5]. Устройства без отражений отличаются распределенной перекачкой энергии между волнами с усилением и внутренней обратной связью [6–8]. В генераторах с отражениями возбуждаются колебательные моды секций [4, 5].

Источники излучения на модах колебаний, зависящих от потока и от процессов вблизи π -вида, являются многорезонаторными генераторами поверхностных стоячих волн. При большом диаметре потока и малых микропервеансах [7] они могут иметь высокий кпд, так как к ним применима процедура оптимизации, разработанная для пространственно-развитых высокоэффективных многорезонаторных клистронов [9, 10].

В генераторах на поверхностных волнах проявляются особенности взаимодействия в области частот π -вида [6, 8]. Влияние потока приводит к смещению границы полосы, электронной перестройке частот, одновременному проявлению режимов ЛОВ и ЛБВ. Ввиду сложности процессов они изучались чаще всего для волноводов, согласованных в «холодном» режиме. Ниже исследуется влияние электронной среды, в основном при больших плазменных частотах, на самовозбуждение односекционных резонаторных генераторов поверхностной волны.

1. Эквивалентная цепь и ее уравнения

Волновод на частотах π -вида моды E_{01} описывается с помощью эквивалентной цепи [6]. Вводятся амплитуды напряжения V_n и V_{n+1} на входе и выходе n-й ячейки (n = 1, ..., N), ток I_n , коэффициент передачи $\gamma = \alpha + i\varphi$, где α — затухание и φ — сдвиг фазы на период d. Поток изменяет величины $|V_n|$, $|I_n|$, α , φ и приводит к возникновению собственных волн связанной системы номера j с постоянными α_j и φ_j .

Пусть система имеет параметры, близкие к параметрам релятивистского генератора поверхностной волны [1, 2] ($d = 1, 6 \text{ см}, N = 30, I_0 = 5 \text{ кA}$). Цепь четырехполюсника для моды E_{01} включает сопротивление продольной ветви Z и проводимость поперечной ветви Y. Резонансные свойства и потери описываются с помощью контура L_0C_0 , содержащего омическое сопротивление R_0 [8]. В случае параллельного включения элементов контура получаем

$$Z = i\omega L_0/(1 - \omega^2/\omega_0^2 + i\omega\delta_0/\omega_0), \ Y = i\omega C, \ \ \omega_0^2 = 1/L_0C_0, \ \ \ \delta_0 = \omega_0L_0/R_0,$$

причем $\omega_{\pi} \cong \omega_0$. Связь потока и поля в емкостном зазоре C_0 задается коэффициентом электронного взаимодействия M. Поток определяется постоянными составляющими тока I_0 и скорости v_0 , ускоряющим напряжением V_0 , переменными скоростью v_n и током J_n . Цепь возбуждается наведенным током $-MJ_n$. В начале (z = 0) и конце (z = L) цепочки подключены нагрузки Z_0 , Z_L и ЭДС \mathcal{E}_0 , \mathcal{E}_L . Уравнения П-образной цепи с учетом наведенного тока имеют вид [6]

$$V_n = V_{n+1}(1 + ZY/2) + I_{n+1}Z - MJ_nZ,$$

$$I_n = V_{n+1}Y(1 + ZY/4) + I_{n+1}(1 + ZY/2) - MJ_nZY/2.$$
(2)

Согласно линейной теории устройств с продольным взаимодействием вводятся пормальные амплитуды

прямой a_{sn+} и встречной a_{sn-} волн волноведущей системы, а также нормальные амплитуды быстрой a_{qn+} и медленной a_{qn-} волн пространственного заряда [6]:

$$a_{sn\pm} = (1/4)(Z_s)^{-1/2}(V_n \pm Z_s I_n), \ a_{qn\pm} = (1/4)(Z_e)^{-1/2}(V_{en} \mp Z_e J_n), \ Z_s = [(Z/Y)/(1+ZY/4)]^{1/2}, \quad Z_e = Z_{e0}/K_{\gamma}, \ Z_{e0} = (2V_0/I_0)(\omega_q/\omega),$$

 $V_{en} = v_0 v_n (m_0/|e|) \gamma_0^3$ — кинетический потенциал, $|e|/m_0$ — отношение заряда электрона к массе покоя, $\gamma_0 = (1 - v_0^2/c^2)^{-1/2}$, $K_{\gamma} = 2|e|V_0/(m_0 v_0^2 \gamma_0^3)$, $\omega_q = \omega_p R$, ω_q и ω_p — плазменные частоты, R — коэффициент редукции, Z_s и Z_e — характеристические сопротивления П-образной цепи и электронного потока.

Уравнения для амплитуд $a_{sn\pm}$, следующие из (2), (3), записываются с явным выделением коэффициента передачи ячейки γ :

Коэффициенты передачи γ и дискретной связи c_{se} в общем случае зависят от потерь, задаваемых параметром $g = (R_0G_0)^{-1}$, $G_0 = I_0/V_0$. В цепочке без потерь ($\alpha = 0$) на частотах вдали от π -вида, когда сh $\gamma \cong 1$ и sh $\gamma \cong i\varphi$, величина c_{se} переходит в коэффициент непрерывной связи $\bar{c}_{se} = (i\beta'_s/2)(Z_s/Z_e)^{1/2}$ [11], где $\beta'_s = \varphi/d$ ($\gamma = -i\beta_s d$, $\beta_s = \beta'_s + i\beta''_s$).

По аналогии с [11] вводится условие критической связи

$$M_{
m cr}|c_{se}|_{
m cr}/eta_s''(g)\cong 1.$$

При фиксированных потерях g, заданных параметрах цепочки и потока механизмы ЛБВ и ЛОВ возможны при коэффициентах взаимодействия $M > M_{\rm cr}$. В дальнейшем исследуются случаи малых потерь $M|c_{se}| \gg \beta_s''$.

Уравнения нормальных волн потока аналогичны записанным в работе [6]. Они содержат постоянные распространения $\beta_{q\pm} = \beta_e (1 \mp \omega_q/\omega), \beta_e = \omega/v_0$. В случае больших плазменных частот выделена медленная волна потока, имеющая фазовую скорость $v_{q-} = v_0/(1 + \omega_q/\omega)$. На частотах вдали от π -вида при малых коэффициентах M реализуется двухволновая связь, основанная на синхронизме медленной волны потока с прямой (режим ЛБВ) или обратной (ЛОВ) пространственными гармониками поля номера l (обычно l = 0 или -1, рис. 1,a)

$$\begin{aligned}
 v_{q-}(\omega_{\rm syn}) &\cong v_{sl}(\omega_{\rm syn}), \\
 v_{sl} &= \omega/|\operatorname{Re}\beta_s + 2\pi l/d|,
 \end{aligned}
 (5)$$

где $\omega_{\rm syn}$ — частота синхронизма. Синхронизм на частоте π -вида ($\omega_{\rm syn} \cong \omega_{\pi}, V_0 \cong 450$ кВ, рис. 1,*a*), при M > 0 соответствует трехволновой связи.

Рис. 1. Зависимости сдвига фазы φ_j/π (кривые 1–8) и затухания α_j (кривые 9–14) (a), мощности обратной волны в сечении z = 0 $P_{BW}(0)$ системы без потока (кривая 15) и с потоком (кривые 16–20) (б) от частоты для прямой l = 0 (1) и обратной l = -1 (2) волн волновода без потока, для внеполосного реактивного затухания (9), для медленной электронной волны при коэффициенте M = 0 (3), для системы с потоком при стартовых значениях $M_{\rm st} = 0,053$ (4, 10, 16), 0,18 (5, 11, 17), 0,42 (6, 12, 18), 0,5 (7, 13, 19), 0,7 (8, 14, 20). $I_0 = 5$ кА, $V_0 = 450$ кВ, $\mathcal{E}_L = 0,001, \omega_g/\omega = 0,25, g = 0, Z_0 = Z_L = 0,1Z_s$

2. Моды колебаний в рассогласованном волноводе без потерь

В области частот $\omega \leq \omega_{\pi}$ для цепочки П-образных звеньев без потерь (g = 0) в отсутствие потока записываются формулы ($x = \omega/\omega_0$)

$$Z_s = [(L_0/C)/(1-x^2)]^{1/2}/\cosarphi, \ arphi = 2 \arcsin[(C/2C_0)(x^2/(1-x^2))]^{1/2}.$$
 (6)

Согласно (6) $\omega_{\pi} = \omega_0 \ (x_{\pi} = 1)$. Если $\omega \to \omega_{\pi}$, то $Z_s \to \infty$. В генераторах [1–7] большие Z_s не реализуются из-за переизлучения поверхностного поля в объемные поля. В секциях без согласователей в области π -вида зачастую $Z_0 = Z_L \cong (L_0/C)^{1/2} \ll Z_s$ и существуют отражения от концов.

Нагрузки в сечениях z = 0, L считаются одинаковыми: $Z_0 = Z_L$. Коэффициенты отражения в этих сечениях даются формулами

$$\Gamma_0 = (Z_0 - Z_s)/(Z_0 + Z_s), \quad \Gamma_L = (Z_L - Z_s)/(Z_L + Z_s).$$

В системе возбуждаются моды колебаний E_{01m} со сдвигом фаз на период:

$$\varphi_m = \pi m/N, \quad m = 1, 2, \dots, N-2, N-1, N.$$
 (7)

Картина вынужденных колебаний ($\mathcal{E}_L \neq 0$) показана на рис. 1,6 для пяти мод с индексами $m = N - 5, \ldots, N - 1$ в случае волновода с большими отражениями ($Z_0 = Z_L = 0, 1Z_s$). Для связи с экспериментом [1–5] важно влияние потока на моды с индексами m = N - 2, N - 1 (E_{01N-1}, E_{01N-2}), имеющие

«холодную» добротность $Q_m \sim 10-100$. Вне полосы прозрачности ($\omega > \omega_{\pi}$) колебания срываются из-за реактивного затухания $\alpha \neq 0$.

Вынужденные колебания в области резонансной частоты моды с m = N требуют отдельного анализа, так как при $\omega \cong \omega_{\pi}$ влияние потока особенно велико из-за максимального значения коэффициента связи $|c_{se}|$ [6]. Выразим коэффициент через параметры теории ЛБВ C_e и σ_q :

$$\begin{aligned} |c_{se}|d &= C_e (2K_{\gamma}/\sigma_q)^{1/2}, \quad C_e^3 = |Z_s|I_0/4V_0, \\ \sigma_q &= \omega_q/(\omega C_e). \end{aligned} \tag{8}$$

Если g=0 и $\omega \to \omega_{\pi}$, то согласно (6) $C_e \to \infty, \sigma_q \to 0$ и $|c_{se}| \to \infty$.

3. «Горячее» смещение границы полосы и моды колебаний

Пусть синхронизм волны поля волновода без потерь и волны потока достигается на частоте π -вида $(V_0 = 450 \text{ кB})$. При больших отражениях $(Z_0 = Z_L = 0, 1Z_s)$ влияние электронной среды на моды $m = N - 5, \ldots, N - 1$ определяется смещением границ комплексного решения для собственных волн связанной системы $\alpha_j \neq 0$ (рис. 1,*a*), проявляющимся как «горячее» смещение границы полосы прозрачности. Резонансные кривые мод сохраняются, только если находятся в области $\alpha_j = 0$. При стартовых значениях коэффициента $M = M_{\rm st}$ можно возбудить генерацию на различных модах (рис. 1,б, $P_{BW} \to \infty$). Из-за влияния потока частоты генерации мод $m \leq N-2$ меньше «холодных» резонансных частот. Для моды m = N - 1 отмечается высокочастотное смещение.

Моды m = N - 4, N - 3 отличаются близкими стартовыми значениями $M_{\rm st}$. В этом случае возможна двухчастотная генерация, что является недостат-ком режима больших M. Селекция мод облегчается при переходе к малым M (в эксперименте — за счет уменьшения радиуса потока).

Существенное уменьшение пусковых значений $M_{\rm st}$ при увеличении резонансной частоты (рис. 1,б) делает предпочтительным получение генерации на более высокочастотных модах с m = N - 2, N - 1. Однако вблизи границы полосы надо учитывать распределенные потери $g \neq 0$.

Рис. 2. Зависимости относительного значения мощности обратной волны в начальном сечении $P_{BW}(0)/|P_{BWM}(0)|$ от частотной расстройки $\Delta \omega/\omega_m$ для мод m = N - 1 (a) и m = N - 2 (б) при значениях параметров: M = 0, g = 0,04 (l), 0,02 (2), 0,002 (3), 0 (7); g = 0,02, M = 0,03 (4), 0,045 (5), 0,055 (6); g = 0, M = 0, 1 (8), 0,14 (9), 0,172 (10). $I_0 = 5$ кА, $V_0 = 450$ кВ, $\omega_g/\omega = 0,25, Z_0 = Z_L = 0,1Z_s$

4. Электронное изменение добротности и резонансной частоты

Детализированная картина электронного смещения частоты и сужения резонансных кривых вынужденных колебаний мод с m = N - 1, N - 2 в системе с большими отражениями представлена на рис. 2 ($\mathcal{E}_L \neq 0$). Отмеченное на рис. 1 низкочастотное смещение резонансного максимума сохраняется для моды m = N - 2 (рис. 2,*a*). Мода m = N - 1 отличается высокочастотным сдвигом (рис. 2,б), обусловленным влиянием моды m = N.

Добротность моды m = N - 1 в случае M = 0 и g < 0,002 определяется потерями на входе и выходе. Распределенные потери дают заметный вклад лишь при $g \ge 0,002$ (рис. 2,*a*, штриховые линии). По мере возрастания M до $M_{\rm st}$ резонансная кривая сужается, причем процесс происходит в пределах «горячей» полосы прозрачности (рис. 2,*a*, сплошные линии).

Сужение резонансных кривых мод с $m \leq N-2$ объясняется изменением добротности Q_m колебательного контура *m*-й моды. Величина Q_m зависит от резонансной частоты ω_m , емкости C_m и проводимости G_m :

$$Q_m = 1/(\omega_m C_m G_m), \quad G_m = G_{zm} + G_{gm} + G_{em},$$

где G_{zm} — проводимость потерь на входе и выходе, G_{gm} — проводимость распределенных потерь, G_{em} — действительная часть электронной проводимости [10] $Y_{em} = G_{em} + iB_{em}$. По мере увеличения коэффициента M до $M_{\rm st}$ происходит рост значения $|G_{em}|$ и увеличение добротности Q_m . В области $M \cong M_{\rm st}$ $G_m \cong 0$ и добротность обращается в бесконечность.

5. Селекция мод m = N - 2, N - 1 выбором ускоряющего напряжения V_0

Стартовые значения коэффициента $M_{\rm st}$ для моды m = N - 2 в волноводе с большими отражениями заключены в двух областях напряжения V_0 (рис. 3). Минимумы $M_{\rm st}$ определяются механизмами ЛБВ и ЛОВ, приходятся на напряжения синхронизма с прямой и обратной волнами. Отмеченное на рис. 1 соотношение между частотой генерации ω_0 и низкочастотной границей комплексного решения при наличии потока ω_{LF} ($\omega_G < \omega_{LF}$) не выполняется в высоковольтной области.

Минимум $M_{\rm st}$ для моды m = N - 1 более глубокий и приходится примерно на напряжение синхронизма в области частот π -вида. При низковольтном смещении от π -вида зависимости $M_{\rm st}$ от V_0 пересекаются, что соответствует двухчастотному режиму генерации.

6. Влияние отражений на условия генерации в области мод m = N - 1, N

Расчеты показали, что при больших отражениях мода m = N отличается сильной зависимостью добротности от параметра потерь g и уже при $g \ge 0,0002$ амплитуда вынужденных колебаний моды существенно падает. Дальнейшие исследования генерации велись при учете потерь и при условии синхронизма на частоте π -вида.

Уменьшение отражений по мере увеличения параметра $Z_0/Z_s = Z_L/Z_s$ влияет на стартовые условия через смещение границы комплексного решения (рис. 4). Изменение $M_{\rm st}$ повторяет ход зависимости расстройки $|\Delta\omega_{LF}|/\omega_{\pi}$, где $\Delta\omega_{LF} = \omega_{LF} - \omega_{\pi} < 0$. Частота генерации ω_G испытывает высокочастотное электронное смещение $\Delta\omega_G = \omega_G - \omega_{\pi} < 0$, уменьшающееся с улучшением согласования. При больших отражениях $Z_0 = Z_L \leq 0, 2Z_s$ частота генерации находится в «горячей» полосе прозрачности $|\Delta\omega_G| > |\Delta\omega_{LF}|$, что соответствует возбуждению моды m = N - 1.

При малых отражениях $Z_0 = Z_L > 0, 5Z_s$ по мере улучшения согласования частота генерации приближается к частоте π -вида и совершается переход от режима возбуждения моды колебаний m = N, возмущенной потоком, к режиму ЛОВ–ЛБВ при малых потерях и к электронной моде генерации при потерях, близких к критическим.

Рис. 3. Зависимости стартового значения коэффициента взаимодействия $M_{\rm st}$ мод m = N - 2 (кривые l, 2) и m = N - 1 (кривая 3), расстроек частоты генерации $|\Delta \omega_G|/\omega_{\pi}$ при m = N - 2 (кривые 4, 5) и m = N - 1 (кривая 6), расстроек частот низкочастотной $|\Delta \omega_{LF}|/\omega_{\pi}$ (кривая 7) и высокочастотной $|\Delta \omega_{HF}|/\omega_{\pi}$ (кривая 8) границ области комплексного решения от ускоряющего напряжения V_0 . $I_0 = 5$ кА, $\omega_q/\omega = 0, 25, g = 0$, $Z_0 = Z_L = 0, 1Z_s$

7. Взаимодействие мод m = N - 1, N и их кооперация под влиянием потока

В режиме согласования вблизи максимума $M_{\rm st}$ при $Z_0=Z_L=0, 4Z_s$ (рис. 4) отмечается возбуж-

дение мод m = N - 1, N, возмущенных потоком. В этом режиме $M_{\rm st} \cong 0, 1$ и резонансные частоты мод m = N - 1, N согласно рис. 1 попадают в область комплексного решения. Процессы зависят от реактивного затухания, усиления ЛБВ и взаимодействия ЛОВ-типа. Резонансные частоты вынужденных колебаний при M = 0,07-0,10 также заметно больше частот границ комплексного решения, рис. 5,*a*.

Рис. 4. Зависимости стартового значения коэффициента взаимодействия $M_{\rm st}$ (кривые 1, 4, 7), расстроек частоты генерации $|\Delta\omega_G|/\omega_{\pi}$ (кривые 2, 5, 8) и частоты границы существенного комплексного решения $|\Delta\omega_{LF}|/\omega_{\pi}$ (кривые 3, 6) в области мод m = N - 1, N от параметра согласования $Z_0/Z_s = Z_L/Z_s$ при распределенных потерях g = 0,002 (1–3, 7, 8); 0,02 (4–6) и напряжениях синхронизма $V_0 = 450$ кВ (1–6), 186 кВ (7, 8) для $\omega_q/\omega = 0,25$ (1–6), 0,01 (7, 8). $I_0 = 5$ кА

В случае малых M максимумы резонансных кривых мод m = N - 1, N разделены и близки к «холодным» значениям, рис.5, δ . Отчетливо выявлены колебания моды m = N, имеющей большую добротность. По мере увеличения M максимумы сближаются. Наблюдается электронная кооперация мод. Вблизи стартового значения $M_{\rm st}$ максимумы сливаются и устанавливается единый процесс («горячая» мода).

Рис. 5. Зависимости сдвига фазы φ_j/π (кривые 1, 2) и параметра затухания α_j (кривые 3, 4) (a), мощности обратной волны в начальном сечении $P_{BW}(0)$ (b) от частотной расстройки $\Delta \omega/\omega_G$ для коффициентов электронного взаимодействия M = 0,07 (1, 3, 5), 0,08 (6), 0,09 (7), 0,094 (8), 0,096 (9), 0,10 (2, 4, 10). $I_0 = 5$ кА, $V_0 = 450$ кВ, $\mathcal{E}_L = 0,001, \omega_g/\omega = 0,25, g = 0,002, Z_0 = Z_L = 0,4Z_s$

8. Особенности режима малого пространственного заряда

При $\omega_q/\omega \sim 0,01$ процессы изменяются из-за динамического сближения линий волн потока. Условие $\omega_G > \omega_{LF}$ выполняется уже при малых M. Обостряется конкуренция мод, и на графиках типа рис. 1,6 исчезают линии генерации мод m = N - 2, N - 4. При отражениях значения $M_{\rm st}$ моды m = N - 1 понижаются, а отстройка частоты генерации от π -вида возрастает (рис. 4). Мода m = N почти не возбуждается.

Заключение

При значительных отражениях влияние потока проявляется в подавлении колебательных мод из-за смещения границы комплексного решения. При слабой связи потока и поля наиболее эффективно возбуждение моды m = N - 1. По мере уменьшения отражений отмечается кооперация мод m = N - 1, N и переход к генерации на частоте π -вида.

Литература

- 1. Александров А.Ф., Галузо С.Ю., Канавец В.И. и др. // ЖТФ. 1981. **51**, № 8. С. 1727.
- Александров А.Ф., Афонин А.М., Галузо С.Ю. и др. // Релятивистская высокочастотная электроника. Горький, 1981. № 2. С. 145.

- Александров А.Ф., Власов А.Н., Галузо С.Ю. и др. // Релятивистская высокочастотная электроника. Горький, 1983. № 3. С. 204.
- Bastrikov A.N., Bugaev S.P., Deichuly M.P. et al. // 9th Int. Conf. on High-Power Particle Beams. Washington. 1992. V. 3. P. 1586.
- Дейчули М.П., Кошелев В.И., Пикунов В.М., Чернявский И.А. // Радиотехн. и электроника. 1995. 40, № 9. С. 1440; 1996. 41, № 2. С. 228.
- 6. Канавец В.И., Мозговой Ю.Д., Слепков А.И. Излучение мощных электронных потоков в резонансных замедляющих системах. М., 1993.
- Бугаев С.П., Канавец В.И., Кошелев В.И., Черепенин В.А. Релятивистские многоволновые СВЧ-генераторы. Новосибирск. 1991.
- Канавец В.И. //Вестн. Моск. ун-та. Физ. Астрон. 1994. № 4.
 С. 26 (Moscow University Phys. Bull. 1994. No 4. P. 20).
- 9. Канавец В.И., Лопухин В.М., Сандалов А.Н. Нелинейные процессы в мощных многорезонаторных клистронах и оптимизация их параметров // Лекции по электронике СВЧ. Кн. 7. Саратов. 1974.
- 10. Шевчик В.Н., Трубецков Д.И. Аналитические методы расчета в электронике СВЧ. М., 1970.
- Канавец В.И. // Вестн. Моск. ун-та. Физ. Астрон. 1996.
 № 4, С. 35 (Moscow University Phys. Bull. 1996. No 4. Р. 30).

Поступила в редакцию 11.06.97