тик сильно размываются, что экспериментально наблюдалось в работах [2, 3]. Заметим, что «старение» кристаллов, связанное с увеличением числа дефектов, также приводит к размытию диэлектрических и акустических аномалий в области перехода за счет возникновения локальных электрических полей, упругих напряжений и их градиентов.

Литература

- 1. Струков Б.А., Леванюк А.П. Физические основы сегнетоэлектрических явлений в кристаллах. М., 1983.
- 2. Imai K.J. // Phys. Soc. Japan. 1974. No. 4. P. 1069.
- 3. Зарембо Л.К., Красильников В.А., Румянцева В.А., Сердобольская О.Ю. // Акуст. журн. 1995. **41**, № 5. С. 784.

Поступила в редакцию 24.06.97

ФИЗИКА ТВЕРДОГО ТЕЛА

УДК 539.1

РАСЧЕТ УПРУГИХ ПОСТОЯННЫХ МЕТАЛЛОВ С ГЕКСАГОНАЛЬНОЙ ПЛОТНОЙ УПАКОВКОЙ

В. М. Силонов, И. А. Гляненко

(кафедра физики твердого тела)

Методом модельного потенциала в гармоническом приближении с учетом взаимодействия до четвертой координационной сферы проведен расчет упругих постоянных Mg, Zr и Ti. Как в случае Mg, так и в случае переходных металлов Zr и Ti рассчитанные значения упругих постоянных оказались близкими к экспериментальным. Для Zr и Ti наиболее близкими к экспериментальным оказались значения упругих постоянных C_{12} , C_{13} , C_{33} , а для C_{11} и C_{44} расхождения составили около 20%.

В настоящее время метод модельного потенциала достаточно широко применяется для изучения многих важных свойств металлов и сплавов, таких как энергия упорядочения, устойчивость фаз, фононные спектры, плотность электронных состояний и т.п. Наиболее успешным оказалось применение псевдопотенциалов для металлов с ОЦК и ГЦК структурами [1-3]. В то же время недостаточно полно исследована возможность использования модельных потенциалов для расчета подобных характеристик ГПУ металлов и сплавов, в частности переходных элементов. Упругие постоянные ГПУ металлов могут быть рассчитаны, если известны значения потенциалов межатомного взаимодействия F(r). В работе [4] при вычислении F(r) предполагается знание распределения электронной плотности вокруг ядер. В этой работе проводился расчет упругих постоянных для Mg с применением потенциала, построенного на основе распределения электронной плотности в рамках метода функционала плотности. Однако применение использовавшихся в [4] достаточно громоздких формул для переходных элементов представляет значительные трудности. В то же время расчет упругих постоянных как для простых, так и для переходных металлов может быть проведен в рамках метода модельного потенциала. Целью данной работы является применение метода модельного потенциала для вычисления упругих постоянных ряда металлов с ГПУ структурой.

Методика расчета

Как отмечалось в работе [4], в гармоническом приближении для расчета упругих постоянных элементов с ГПУ структурой можно ограничиться рассмотрением координационных сфер до четвертой включительно. В этом приближении упругие постоянные могут быть рассчитаны с использованием выражений [5, 6]:

$$C_{11} = \sqrt{3}(3lpha - A_1 - L)/2c,$$

$$\begin{split} C_{12} &= C_{11} - \frac{1}{\sqrt{3} c} \times \\ &\times [3(\alpha - 3A_1) - 3B_1 - B_2 - 12G_1 - 4G_2 + P], \\ L &= \left[(2B_2 + G_2 + 3G_1)(3B_1 + B_2 + 8G_2) + \\ &+ 2G_2(3B_1 + B_2) \right] \Big/ 3(B_1 + B_2 + G_1 + G_2), \\ &\quad C_{13} &= \frac{2}{a}(2G_4 - B_4) - C_{44}, \\ &\quad C_{33} &= \frac{c}{\sqrt{3} a^2} [-3(B_3 + G_3) + 4\delta], \\ &\quad C_{44} &= -\frac{2}{\sqrt{3} c}(3A_2 + B_3 + 4G_3), \\ &\quad P &= \frac{(B_1 - B_2 - 2G_1 + 2G_2)^2}{B_1 + B_2 + G_1 + G_2}, \\ &\quad \alpha &= -[k_1(1) + C_B(1)], \quad A_1 = A_2 = C_B(1), \quad A_3 = 0. \end{split}$$

$$\begin{split} B_1 &= C_B(2), \quad B_2 = \frac{1}{3}(K_1(2) + 3C_B(2)), \\ B_3 &= 2B_2 - B_1, \quad B_4 = \sqrt{2}(B_2 - B_1), \\ G_1 &= C_B(3), \quad G_2 = \frac{1}{3}(2K_1(3) + 3C_B(3)), \\ G_3 &= \frac{1}{2}(G_1 + G_2), \quad G_4 = \frac{G_2 - G_1}{\sqrt{2}}, \\ \delta &= -(K_1(4) + C_B(4)), \\ K_1(S) &= (\alpha_i - \beta_i)_S, \quad C_B(S) = (\beta_i)_S. \end{split}$$

В этих выражениях C_{11} , C_{12} , C_{13} , C_{33} и C_{44} — упругие постоянные, a и c — параметры кристаллической решетки.

С использованием рассчитанных потенциалов межатомного взаимодействия вычислялись значения радиальных (α_i) и тангенциальных (β_i) силовых постоянных для первых четырех координационных сфер по формулам

$$lpha_1 = rac{d^2 F}{dr^2} igg|_{r_i}, \quad eta_1 = rac{1}{r} \left. rac{dF}{dr}
ight|_{r_i},$$

где *i* — номер координационной сферы.

Во втором порядке теории возмущений потенциал межатомного взаимодействия записывается следующим образом [7]:

$$F(r)=rac{Z^2e^2}{r}-rac{2Z^2e^2}{\pi}\int\limits_0^\infty G(q)rac{\sin qr}{qr}dq,$$

где Z — валентность, q — модуль вектора рассеяния, r — межатомное расстояние.

В качестве исходных данных используется набор формфакторов модельных потенциалов в аналитической форме, предложенный Анималу [8, 9]:

для простых элементов

$$W(q,\mathbf{k},\mathbf{k}')=rac{B(q)}{arepsilon(q)}+F(q,\mathbf{k},\mathbf{k}')+I(q),$$

для переходных элементов

$$W(q, \mathbf{k}, \mathbf{k}') = \frac{B(q) + F(q, \mathbf{k}, \mathbf{k}')}{\varepsilon(q)}.$$
 (1)

Здесь B(q) — локальная часть, $F(q, \mathbf{k}, \mathbf{k}')$ — нелокальная часть, $\varepsilon(q)$ — функция диэлектрической проницаемости, I(q) — дополнительный член для простых металлов. Эти выражения не приводятся полностью ввиду их громоздкости.

Как показано в работе [10], расчет формфакторов модельных потенциалов и для простых, и для переходных элементов можно проводить с использованием формулы (1).

Параметры A_0 , A_1 , A_2 , R_m , Ω , Z, m^* , R_c , α_{eff} и $|E_c|$, использованные при расчете формфакторов модельных потенциалов, приведены в табл. 1. Характеристическая функция G(q) рассчитывалась по формуле [7]:

$$G(q) = \left[rac{4\pi Z e^2}{\Omega q^2}
ight]^2 rac{W(q)^2}{1-f(q)} \left(1-rac{1}{arepsilon(q)}
ight).$$

Таким образом, если известны значения характеристических функций G(q), можно рассчитать силовые постоянные для каждого набора ближайших соседей.

Таблица 1

Металл	<i>a</i> , Å	<i>c</i> , Å	A_0 , a.e.	<i>A</i> ₁ , a.e.	A_2 , a.e.	R_m , a.e.	Ω, a.e.	Z, a.e.	<i>m</i> *, a.e.	R_c , a.e.	$lpha_{ ext{eff}}$	$ E_c $, Ry
Mg	3,21	5,21	0,78	0,88	0,99	2,6	155,9	2	1,0	1,47	0,043	0,086
Ti	2,95	4,68	2,30	2,50	2,10	2,0	119,0	4	1,0	1,285	0,037	0,096
Zr	3,23	5,15	1,15	1,70	1,30	2,0	157,0	4	1,0	1,493	0,044	0,095

Параметры модельных потенциалов

Таблица 2

Расчетные значения атомных силовых постоянных при учете от 1 до 4 координационных сфер

Радиусы и силовые	Mg				Ti				Zr			
постоянные	1	2	3	4	1	2	3	4	1	2	3	4
r_i , Å	3,20	3,21	4,53	5,21	2,89	2,95	4,13	4,68	3,18	3,23	4,53	5,15
$\alpha_i \cdot 10^{-4}$, дин/см	1,41	1,04	0,12	-0,052	2,95	1,23	0,24	0,07	2,42	1,17	0,37	0,12
$egin{array}{c c c c c c c c c c c c c c c c c c c $	0,0012	0,0010	-0,033	-0,0006	0,20	0,12	-0,071	-0,019	0,11	0,07	-0,13	-0,043

Результаты расчета

Зависимости G(q) и F(r) для Mg приведены соответственно на рис. 1 и 2. Сходный вид имеют эти зависимости для Zr и Ti.

В табл. 2 приведены радиусы первых четырех координационных сфер и значения атомных силовых постоянных для Mg, Zr и Ti. Из табл. 2 видно, что силовые постоянные, соответствующие первой и второй координационным сферам, для каждого из элементов имеют близкие значения, что является следствием близких значений радиусов этих сфер. Радиальная силовая постоянная для каждой координационной сферы больше тангенциальной постоянной.

В табл. 3 приведены упругие постоянные для Mg, Zr и Ti, рассчитанные приведенным выше методом, а также методом [4], и экспериментальные значения [11–13].

Сравнение показывает, что расчет упругих постоянных для Mg методом модельного потенциала и расчет с использованием функции распределения электронной плотности [4] удовлетворительно согласуются с экспериментом. Для Ti и Zr также получено удовлетворительное согласие рассчитанных значений упругих постоянных с экспериментальными данными.

```
Таблица 3
```

Упругие	постоянные
---------	------------

Метапл	Источник ланных	$C \cdot 10^{-12}$, дин/см ²						
		C_{11}	C_{22}	C_{13}	C_{33}	C_{44}		
	Расчет	0,71	0,32	0,34	0,84	0,17		
Mg	(настоящая работа)							
	Расчет [4]	0,59	0,26	0,21	0,62	0,16		
	Эксперимент [13]	0,83	0,32	0,19	0,97	0,18		
	Эксперимент [11]	0,63	0,25	0,21	0,66	0,18		
	Расчет	2,17	0,81	0,75	2,06	0,59		
Ti	(настоящая работа)							
	Эксперимент [11]	1,62	0,92	0,69	1,81	0,46		
	Расчет	1,75	0,63	0,61	1,98	0,25		
Zr	(настоящая работа) Эксперимент [11] Эксперимент [12]	1,44 1,43	0,72 0,73	0,65 0,65	1,65 1,65	0,32 0,32		

В то же время нужно отметить, что более близкими к экспериментальным оказались значения упругих постоянных C_{12} , C_{13} , C_{33} . Расхождение для C_{11} и C_{44} составило ~ 20%. Это расхождение может быть обусловлено тем, что расчет ограничен учетом лишь четырех координационных сфер.

Литература

- 1. *Харрисон У.* Электронная структура и свойства твердых тел. Физика химической связи. М., 1983.
- 2. Хейне В., Коэн М., Уэйр Д. Теория псевдопотенциалов. М., 1974.
- 3. Силонов В.М. Физика сплавов. М., 1994.
- Magana L.F., Vazquez G.J. // J. Phys.: Condens. Matter. 1995.
 7. P. L393.
- 5. Shukla R.C. // J. Chem. Phys. 1966. 45. P. 4178.
- 6. Collins M.F. // Proc. Phys. Soc. 1962. 80. P. 362.
- Upadhyaya S.C., Upadhyaya J.C., Shyam R. // Phys. Rev. 1991.
 B44. P. 122.
- 8. Animalu A.O.E., Heine V. // Phil. Mag. 1965. 12. P. 1249.
- 9. Animalu A.O.E. // Phys. Rev. 1973. B8. P. 3542.
- 10. Силонов В.М. Таблицы формфакторов псевдопотенциалов Анималу: Деп. ВИНИТИ № 1171-76. М., 1976.
- 11. *Францевич И.Н., Воронов Ф.Ф., Бакута С.А.* Упругие постоянные и модули упругости металлов и неметаллов. Киев, 1982.
- 12. Cavakheiro R., Shukla M.M. // Nuovo Cimento. 1975. B30. P. 1.
- 13. Slutsky L., Garland C.W. // Phys. Rev. 1957. B107. P. 972.

Поступила в редакцию 25.06.97