сматриваемых лет. Относительное содержание озона на этих высотах может снижаться на 50–60% по сравнению со средними модельными значениями. Эти изменения существенно превосходят сопутствующее им уменьшение (на 10–25%) общего содержания озона в атмосфере.

Отмеченная связь изменений содержания озона на высотах 30–40 км с перемещениями основных барических систем стратосферы и с положением полярного вихря показывает важную роль динамики стратосферы в распределении озона в этом слое. Вместе с тем для объяснения наблюдавшихся на миллиметровых волнах значительных изменений содержания озона необходимо учитывать влияние на его распределение не только динамических, но и фотохимических процессов, роль которых возрастает в слоях выше 30 км. Полученные результаты содержат новую важную информацию об изменениях, происходящих в озоносфере. Обнаруженное истощение озонового слоя над Московским регионом требует дальнейших наблюдений за его состоянием.

Авторы выражают глубокую благодарность чл.-корр. РАН И. И. Собельману за поддержку работы, а также Г. М. Крученицкому и Т. В. Кадыгровой (ЦАО) и Т. С. Кружковой (Гидрометцентр) за предоставленные данные аэрологического зондирования. Работа была поддержана Российским фондом фундаментальных исследований (грант 96-02-19093а).

Литература

- 1. Собельман И.И., Соломонов С.В., Сороченко Р.Л. // Вестн. РАН. 1993. 63, № 8. С. 721.
- Solomonov S.V., Rozanov S.B., Kropotkina E.P. et al. // Proc. SPIE. 1998. 3406.
- Solomonov S.V., Kropotkina E.P., Lukin A.N. et al. // J. Atmos. Terr. Phys. 1994. 56, № 1. P. 9.
- Соломонов С.В., Кропоткина Е.П., Лукин А.Н. и др. // Изв. РАН, ФАО. 1993. 29, №4. С. 525.
- 5. Тихонов А.Н., Гончарский А.В., Степанов В.В. и др. Регуляризирующие алгоритмы и априорная информация. М., 1983.
- Gaikovich K.P. // Digest Int. Geosciences and Remote Sensing Symp. Pasadena, California, USA, Aug. 8–12, 1994. V. 4. P. 1901.
- Keating G.M., Chiou L.S., Hsu N.C. // Adv. Space Res. 1996.
 18, № 9/10. P. 11.
- Бюллетень о состоянии озонового слоя / Под ред. А. А. Черникова. Вып. 10. Долгопрудный: Изд. ЦАО, 1996.

УДК 551.466.62

ОЦЕНКА УРОВНЯ ЦУНАМИОПАСНОСТИ ЧЕРНОГО МОРЯ

С. Ф. Доценко

Дан обзор современного состояния исследований цунами в Черном море. Представлены обобщенпые физико-географические характеристики исторических цупами по мареографическим дашшым и сведениям описательного характера. Выделены вероятные зоны генерации катастрофических волн. Описаны физические закономерности распространения цунами в открытой части и шельфовой зоне моря, установленные методами численного моделирования.

Катастрофическим цунами подвержены прибрежные и островные территории Тихого океана, Средиземного моря, Восточной Атлантики, Карибского бассейна и ряда других регионов Мирового океана [1–3]. В перечне значимых природных катастроф на Земле в 1963–1992 гг. цунами по экономическому ущербу, числу пострадавших и числу погибших людей занимает соответственно 9, 11 и 12-е место (лидирующую роль играют наводнения, тропические ураганы, засухи, эпидемии, нашествия насекомых, землетрясения и ряд иных явлений [4]).

Не вызывает сомнения необходимость оценок цунамиопасности в прибрежных зонах повышенной сейсмоактивности при проектировании гидротехнических сооружений различного назначения. Потери от цунами неизменно высоки, особенно для развивающихся стран [4]. Ежегодно сильные цунами в Тихом океане причиняют ущерб, оцениваемый в 8 млн долларов США, и отнимают 300 человеческих жизней [5].

Не свободен от опасных природных явлений и район Черного моря, где неоднократно наблюдались сильные наводнения, землетрясения, штормы, оползни, аномальные ледовые режимы. Они сопровождались значительными экономическими потерями для черноморских государств.

Цунамиопасность региона определяется интенсивностью возникавших цунами и повторяемостью эк-

Морской гидрофизический институт НАН Украины, г. Севастополь

стремальных событий. Для Черного моря этот вопрос изучен слабо в силу низкой повторяемости явления и весьма скромного объема натурных данных. Тем не менее поскольку цунами здесь возникали и не исключена возможность их образования в будущем, представляет интерес общая характеристика цунамиопасности Черноморского бассейна.

1. Исторические цунами в Черном море

Цунами в Черном море — сравнительно редкое природное явление. Все известные к настоящему времени подобные события можно разделить на две группы. К первой относятся те, которые в силу исторической давности не были зарегистрированы инструментально, но описаны очевидцами, упомянуты в летописях или легендах. Пункты побережья и годы этих событий указаны на рис. 1, обобщающем данные статей [6–11].

Рис. 1. Известные цунами в Черном море (пункты побережья и годы возникновения), инструментально не зарегистрированные. Знаком ⊕ отмечены эпицентры четырех землетрясений, вызвавших зарегистрированные цунами вдоль Крымского и Кавказского побережий

Цунами наблюдались на многих участках побережья Черного моря. Исторические свидетельства позволяют достаточно уверенно утверждать, что цунами в районах Сухуми (20 г. нашей эры), Севастополя (102 г.), Варны (543 г.), Фороса (1427 г.) и на восточном побережье моря в 1909 г. носили разрупительный характер, имели высоты 3–5 м и были вызваны сейсмическими источниками.

В работах [6–13] описаны характеристики четырех инструментально зарегистрированных цунами. Они сопутствовали Ялтинским землетрясениям 26 июня и 11–12 сентября 1927 г. с магнитудами по шкале Рихтера M = 5,5 и 6,5 соответственно, разрушительному Эрзинджанскому землетрясению 26 декабря 1939 г. (M = 7,9–8,0) на северо-востоке Турции и подводному землетрясению 12 июля 1966 г. (M = 5,8) в районе г. Анапы. Эпицентры этих землетрясений указаны на рис. 1. Цунами 1939 г. вызвано

землетрясением с эпицентром на суше в 150 км от берега [9].

2. Обобщенные характеристики и региональные особенности черноморских цунами

Представленные в работах [6–13] данные позволяют дать обобщенные характеристики зарегистрированных цунами. Диапазоны изменения параметров волн таковы: максимальные высоты в различных пунктах побережья — 0, 03 \div 0, 53 м; средние периоды $T = 8 \div 107$ мин; длины волн $\lambda = CT = 86 \div 120$ км (C — скорость распространения длинных волн). В большинстве случаев цунами характеризовались первоначальным подъемом уровня моря, а первая волна не была максимальной по высоте. Хотя высоты зарегистрированных цунами в пунктах наблюдения не превысили 0,53 м, в некоторых бухтах Крымского полуострова, например в Балаклавской, они составили 1–2 м [6]

Рис. 2. Высоты исторических цунами в Черном море по описаниям (а) и по мареографическим данным (б): 1 — Одесса, 2 — Евпатория, 3 — Севастополь, 4 — Форос, 5 — Ялта, 6 — Феодосия, 7 — Керчь, 8 — Мариуполь, 9 — Новороссийск, 10 — Геленджик, 11 — Туапсе, 12 — Сухуми, 13 — Батуми, 14 — Фатса, 15 — Варна

Информация, приведенная в отмеченных выше статьях, позволяет построить карту высот исторических цунами вдоль побережья Черного моря (рис. 2). В целом их дипазон весьма широк: от нескольких сантиметров до нескольких метров. Волны цунами 11–12 сентября 1927 г. и 12 июля 1966 г. прошли через Керченский пролив, пересекли Азовское море и были зафиксированы в Мариуполе [8]. Сильно выражена неравномерность распределения высот черноморских цунами вдоль побережья моря.

Определенное по мареограммам время распространения цунами до ближайших к очагу участков побережья составило 5–8 мин. Для удаленных точек акватории моря оно значительно больше. Так, при событиях 1927 г. волны распространялись в течение 189 мин до Одессы и 290 мин до Мариуполя.

Отметим ряд особенностей черноморских цунами, некоторые из которых отражают специфику Азово-Черноморского бассейна.

Цунами в Черном море возбуждались как при подводных землетрясениях, так и при землетрясениях на суше. В силу ограниченности бассейна можно ожидать многократного отражения волн от берегов, что косвенно подтверждается усилениями колебаний уровня после периодов относительного затишья. Отмечено прохождение волн из Черного в Азовское море через Керченский пролив. Весьма вероятны захват волн шельфом и их вдольбереговое распространение. Крымский полуостров частично экранирует волны зонального направления: в Одессе отмечены слабые отголоски цунами. Колебания уровня являются модулированными, что указывает на пакетную структуру волнового поля. Наконец, цунами приводили к возбуждению или усилению сейш в бухтах Черного моря.

3. Наиболее вероятные зоны сейсмической генерации черноморских цунами

По современным представлениям, основной причиной образования цунами являются резкие вертикальные смещения протяженных участков морского дна или горизонтальные сдвиги подводных склонов в соответствии с теорией упругой отдачи [14]. К цунамигенным в Тихом океане отнесены подводные землетрясения с магнитудами $M \ge 7$. Для Черного моря пороговое значение M не определено в силу отсутствия точной информации о сильных цунами и землетрясениях прошлых веков.

Рис. 3. Наиболее вероятные зоны сейсмической генерации цунами в Черном море

Общая характеристика сейсмичности Черноморской впадины, опирающаяся на данные 1900–1986 гг., приведена в работах [15, 16]. Приведенные в них карты очагов землетрясений позволяют выделить шесть наиболее вероятных цунамигенных зон (рис. 3): южный участок шельфа Крымского полуострова (зона А), Западно-Кубанскую (Б), Сухумскую (В) и три зоны (Г, Д и Е) вдоль Турецкого побережья. В зонах В–Е возможна генерация цунами как подводными землетрясениями, так и землетрясениями на суше. Помимо этого в работе [16] на основе анализа первичных материалов сделан важный вывод о сейсмичности центральной части Черноморской впадины, которая ранее считалась асейсмичной. В настоящее время Черное море «переживает» период сейсмического спокойствия и нет предпосылок для образования катастрофических цунами. Два последних наиболее сильных подводных землетрясения (M = 6, 0) зафиксированы в 1945 и 1951 гг. в западной части моря. С тех пор не было событий с M > 5. Однако нет оснований для исключения возможности возникновения подводных землетрясений с магнитудами M = 7, 0-7, 5 [16], которые могут сопровождаться сильными цунами.

4. Численное моделирование черноморских цунами

Имеющийся объем результатов наблюдений не позволяет описать процесс развития явления в Черном море. В подобных случаях эффективными, а часто и единственными методами изучения физических закономерностей и региональных особенностей цунами являются вычислительные [17] и лабораторные [18] эксперименты, позволяющие изучать волновой процесс от этапа генерации до выхода волн на берег.

Применительно к Черному морю лабораторные эксперименты не проводились. Что касается вычислительных экспериментов, то для рассматриваемого бассейна реализованы три численные прогностические модели: лучевая модель (ЛМ), одномерная (ЭМ1) и двумерная (ЭМ2) эволюционные модели.

ЛМ описывает рефракцию поверхностных волн в приближении геометрической оптики. Расчет волновых лучей опирается на решение задачи Коши для системы трех обыкновенных дифференциальных уравнений [19]:

$$egin{aligned} &x' = C(x,y)\cos heta, \quad y' = C(x,y)\sin heta, \ & heta' = C_x(x,y)\sin heta - C_y(x,y)\cos heta, \ &x(0) = x_0, \quad y(0) = y_0, \quad heta(0) = heta_0, \end{aligned}$$

где x(t), y(t) — горизонтальные координаты точки на луче в момент времени t, $\theta(t)$ — угол наклона касательной к лучу в точке (x, y), $C = \sqrt{gH(x, y)}$ — скорость распространения длинных волн, H = H(x, y) — глубина бассейна, (x_0, y_0) координаты источника волн, g — ускорение свободного падения.

В случае сосредоточенного источника генерации рассчитываются лучи, выходящие из точки (x_0, y_0) с равномерным шагом по азимутальному углу θ_0 . Для протяженного источника необходимо находить лучи, выходящие по нормали к границе очага цунами. Точки на лучах в момент времени t образуют волновой фронт (изохрону).

ЛМ позволила определить времена распространения цунами до различных пунктов побережья [20], а также изучить характер рефракции волн, излученных из зон генерации исторических цунами [10] и вероятных цунамигенных районов Черного моря [21], указанных на рис. 3.

Типичная карта волновых фронтов в случае генерации цунами точечным сейсмическим источником на материковом склоне Крымского полуострова представлена на рис. 4,*a*. Время прохождения волнами моря в зональном направлении составляет около 110 мин, в меридиональном — 30 мин. Для ближайших к очагу цунами участков побережья оно составляет 5–10 мин. Столь малое время подхода волны цунами делает малоэффективными оперативные мероприятия по защите населения и хозяйственных объектов в зоне береговой черты.

Рис. 4. Структура волны цунами в рамках лучевой (а, указано время распространения волн в минутах) и эволюционной (б) моделей для источника генерации на материковом склоне Южного берега Крыма

Вычислительные эксперименты подтвердили сильную угловую анизотропию излучения энергии из зон сейсмической генерации цунами, вызванную захватом волн материковым склоном и шельфом. По этой причине можно ожидать, что цунами, возникшие в восточной части моря, безопасны для западных участков побережья и наоборот.

Эволюционные модели позволяют прогнозировать высоты волн цунами в открытой и шельфовой зонах моря по известному начальному смещению поверхности моря (ЭМ2), моделирующему отклик морской среды на подводное землетрясение, или по заданным параметрам волны при подходе к материковому склону (ЭМ1).

Модель ЭМ2 в длинноволновом приближении применена для анализа черноморских цунами в работах [13, 22]. Конечно-разностным методом (сетка 75×45 точек, шаг 15 км) решалась задача Коши

$$egin{aligned} & u_t - lv = -g\zeta_x - kH^{-1}u\sqrt{u^2 + v^2}, \ & v_t + lv = -g\zeta_y - kH^{-1}v\sqrt{u^2 + v^2}, \ & \zeta_t + (Hu)_x + (Hv)_y = 0, \ & u = v = 0, \ & \zeta = \zeta_0(x,y) \ & (t = 0) \end{aligned}$$

с условием непротекания жидкости на боковой границе бассейна. Здесь u, v — осредненные по вертикали горизонтальные проекции скорости, ζ — смещения поверхности моря, l — параметр Кориолиса, $k = 2, 6 \cdot 10^{-3}$ — коэффициент придонного трения.

В случае поднятия уровня моря в эллиптической области с осями 120 и 50 км, расположенной в Крымской сейсмоактивной зоне и ориентированной вдоль изобат, образуется волна, показанная на рис. 4,6. Преобладает передача волновой энергии в восточном и западном направлениях. Формированию знакопеременного профиля волны предшествовали этапы отражения от крымского и турецкого участков побережья моря. Наиболее интенсивны волны, распространяющиеся на восток.

Модель ЭМ1 позволяет достичь высокого пространственно-временного разрешения и детально рассмотреть трансформацию и усиление волн при распространении над материковым склоном и шельфом моря [23].

Для описания распространения волн в области $0 \leq x \leq L$, включающей материковый склон и шельф, может быть использована система уравнений

$$u_t+uu_x=-g\zeta_x-kD^{-1}u|u|, \quad \zeta_t+(Du)_x=0,$$

 $D = \zeta + H$, с условиями

$$egin{aligned} &\zeta = \zeta_0 (\lambda/2 - C_0 t), \quad u = (C_0/H_0) \zeta_0 (\lambda/2 - C_0 t) \ &(x = 0, \ t \leqslant T) \end{aligned}$$

свободного входа в расчетную область заданной одиночной волны $\zeta = \zeta_0(x + \lambda/2 - C_0 t)$ длины λ через глубоководную мористую границу x = 0 ($T = \lambda/C_0$) и условием непротекания u = 0 на прибрежной границе x = L, в качестве которой выступает вертикальная стенка на 10-метровой изобате. При t > Tусловия (1) целесообразно заменить на

$$u_t - C_0 u_x = 0, \quad \zeta = -(H_0/C_0)u \quad (x = 0)$$

для обеспечения свободного выхода отраженных волн из расчетной области.

На рис. 5 даны рассчитанные для шельфа Южного берега Крыма вертикальные заплески одиночных волн, имеющих высоту 1 м и различную длину при подходе к материковому склону. Вертикальные заплески убывают с ростом λ . Для относительно коротких волн принципиально важен учет нелинейности процесса. Установлено слабое влияние донного трения на трансформацию волн в шельфовой зоне. Существенным является тот факт, что во всех случаях вычислительный эксперимент выявил многократное усиление волн в шельфовой зоне. Поэтому подобные события представляют потенциальную опасность для жизнедеятельности в прибрежной зоне моря.

Литература

- 1. Соловьев С.Л., Го Ч.Н., Ким Х.С. Каталог цунами в Тихом океане. 1969–1982 гг. М., 1986.
- 2. Соловьев С.Л., Го Ч.Н., Ким Х.С. и др. Цунами в Средиземном море 2000 г. до н. э. — 1991 г. М., 1997.

- 3. *Мурти Т.С.* Сейсмические морские волны цунами. Л., 1981.
- 4. Осипов В.И. // Вестн. РАН. 1995. 65, № 6. С. 483.
- Soloviev S.L. Tsunamis // Assessment and Mitigation of Earthquake Risk. Paris: UNESCO, 1978. P. 118.
- 6. Григораш З.К. // Тр. МГИ АН СССР. М., 1959. 17. С. 59.
- Григораш З.К., Корнева Л.А. // Океанология. 1969. 9, № 6. С. 988.
- 8. Григораш З.К. // Тр. СахКНИИ ДВО АН СССР. Южно-Сахалинск, 1972. Вып. 29. С. 271.
- 9. *Григораш З.К., Корнева Л.А.* // Океанология. 1972. **12**, № 3. С. 417.
- 10. Доценко С.Ф. // Изв. РАН, ФАО. 1994. 30, №4. С. 513.
- 11. Никонов А.А. // Природа. 1994. № 3. С. 72.
- Фомичева Л.А., Рабинович А.Б., Демидов А.Н. // Проект «Моря СССР». Гидрометеорология и гидрохимия морей СССР. IV. Черное море. Вып. 1. Гидрометеорологические исследования. Санкт-Петербург, 1991. С. 352.
- 13. Доценко С.Ф., Коновалов А.В. // Морской гидрофиз. журн. 1995. № 6. С. 3.
- 14. *Магницкий В.А.* Внутреннее строение и физика Земли. М., 1985.
- 15. Чекунов А.В. // Докл. АН УССР. 1990. Сер. Б, № 11. С. 27.
- 16. *Пустовитенко Б.Г., Кульчицкий В.Е.* // Геофиз. журн. 1991. № 3. С. 14.
- 17. Шокин Ю.И., Чубаров Л.Б., Марчук Ан.Г., Симонов К.В. Вычислительный эксперимент в проблеме цунами. Новосибирск, 1989.
- Кононкова Г.Е., Показеев К.В. Динамика морских волн. М., 1985.
- 19. Алешков Ю.3. Теория волн на поверхности тяжелой жидкости. Л., 1981.
- 20. Доценко С.Ф. // Морской гидрофиз. журн. 1993. № 2. С. 39.
- 21. Доценко С.Ф. // Там же. 1995. № 5. С. 3.
- 22. Доценко С.Ф., Коновалов А.В. // Там же. 1995. № 1. С. 67.
- 23. Доценко С.Ф. // Там же. 1997. №4. С. 21.