Литература

- 1. Sasaki R. // Nucl. Phys. 1979. B 154. P. 343.
- Chern S.S., Tenenblat K. // Studies in Appl. Math. 1986. 74. P. 55.
- 3. Позняк Э.Г., Попов А.Г. // ДАН. 1993. 332, № 4. С. 418.
- 4. Позняк Э.Г., Попов А.Г. // Итоги науки и техники. Сер. Геометрия-2. 1994. С. 5.
- 5. Дубровин Б.А., Новиков С.П., Фоменко А.Т. Современная геометрия. Методы и приложения. М., 1986.

УДК 533.9

- Попов А.Г. Методы геометрии Лобачевского в некоторых классах нелинейных задач математической физики: Дисс. ... д-ра физ.-мат. наук. М., 1995.
- 7. *Картан А.* Дифференциальное исчисление. Дифференциальные формы. М., 1971.
- Абловиц М., Сигур Х. Солитоны и метод обратной задачи. М., 1987.

Поступила в редакцию 03.10.97

ПОГЛОЩЕНИЕ МОЩНОГО ЭЛЕКТРОМАГНИТНОГО ИМПУЛЬСА МАЛОЙ ДЛИТЕЛЬНОСТИ СЛОЕМ ПЛОТНОЙ ПЛАЗМЫ

Л. В. Бородачев, П. А. Гофман

(кафедра математики)

Методом численного эксперимента исследован бесстолкновительный режим взаимодействия ультракороткого лазерного импульса большой интенсивности с поверхностным слоем плазмы конденсированной мишсии. Использована $(1\frac{2}{2})$ -мерная дискрстная кинстическая модель перелятивистской плазмы с ионным фоном в дарвинском приближении для самосогласованных электромагнитных полей. Найдено, что поведение плазмы скин-слоя существенно отличается от предсказаний линейной теории. Среднее значение энергии электронов сопоставимо с энергией их осцилляций. Функция распределения частиц сильно анизотропна и значительно отличается от максвелловской.

Введение

Физика взаимодействия субпикосекундных лазерных импульсов большой интенсивности с твердыми мишенями уже достаточно долго привлекает к себе пристальное внимание [1]. Причина этого кроется как в широкомасштабном практическом применении высокотемпературной плазмы, образующейся на поверхности мишени, так и в поисках новых режимов взаимодействия лазер-плазма. До недавнего времени, как правило, обсуждались случаи, когда интенсивность лазера составляет 10¹⁵-10¹⁸ Вт/см² [2]. В этом диапазоне мощностей происходит «столкновительное» поглощение электромагнитной энергии и поведение плазмы мишени описывается классической моделью нормального скин-эффекта. Лазерные же импульсы большей интенсивности (~ 10^{20} Вт/см²), представляющие интерес сегодня, обусловливают круг существенно нелинейных явлений, определяемых бесстолкновительными, коллективными свойствами плазмы [3]. Некоторые из этих явлений, в основном связанных с процессом поглощения энергии лазера, уже рассматривались в ряде публикаций на основе кинетического моделирования [4-7]. В настоящей работе продолжены численные исследования [7] бесстолкновительного режима взаимодействия лазер-плазма. Притом основное внимание уделено связи поглощенной электромагнитной энергии с распределением скоростей и температур частиц в плазме скин-слоя. Для описания поведения электронов была использована $(1\frac{2}{2})$ -мерная (x, v_x, v_y, v_z) дискретная дарвинская модель самосогласованной нерелятивистской плазмы [8, 9]. Движение ионов в силу их практической неподвижности на малых временах действия лазерного импульса не учитывалось. В ходе компьютерных экспериментов было обнаружено, что в противоположность режиму низкой интенсивности волны накачки в случае высокой интенсивности, рассматриваемом ниже, процесс бесстолкновительного поглощения энергии сопровождается сильно неравновесным и анизотропным распределением частиц, которое существенно влияет на коэффициент поглощения лазерного излучения.

1. Постановка задачи

Ниже будем рассматривать случай нормального падения плоской электромагнитной волны линейной поляризации на слой [0, L] бесстолкновительной плазмы с резкой границей. Ось x направлена вдоль нормали к границе плазмы, ось y — вдоль вектора электрического поля волны. Ионы неподвижны и составляют однородный положительный фон. В начальный момент распределение электронов считается максвелловским по скоростям (с заданной температурой T_0) и однородным по пространству со средней плотностью $n_0 > n_c$, где $n_c = m\omega_0^2/4\pi c^2$ — критическая плотность, m и e — масса и заряд электрона, а ω_0 — лазерная частота. Интенсивность внешнего лазерного излучения выбирается такой, чтобы вре-

мя свободного пробега электронов оказалось существенно больше времени действия лазерного импульса, но энергия осцилляторного движения электронов в плазме ε_{osc} при этом была бы много меньше энергии покоя mc^2 . Последнее ограничение является не очень жестким и позволяет рассматривать режимы накачки с интенсивностью более 10^{20} Вт/см², поскольку электрическое поле излучения в плазме намного меньше, чем в вакууме. Как и ранее [7], динамика плазмы скин-слоя описывается системой уравнений

$$egin{aligned} &rac{dx}{dt} = v_x, \quad rac{d\mathbf{v}}{dt} = rac{e}{m} \left(\mathbf{E} + rac{1}{c} \mathbf{v} imes \mathbf{B}
ight), \ &rac{dE_x}{dx} = 4\pi
ho, \quad 4\pi j_x + rac{\partial E_x}{\partial t} = 0, \end{aligned}$$
(1) rot $\mathbf{B} = rac{4\pi}{c} \mathbf{j}_{\perp}, \quad \mathrm{rot} \, \mathbf{E}_{\perp} = -rac{1}{c} rac{\partial \mathbf{B}}{\partial t}, \end{aligned}$

где $B_x = 0$. Индекс — означает *y*- и *z*-компоненты векторов. Падающая электромагнитная волна вне плазмы (x > L) имеет вид

$$-E_y = B_z = B_0 \sin[\omega_0 t + \omega_0 (x - L)/c].$$
 (2)

Чтобы прошедшая волна была слабой, толщина расчетного слоя плазмы L была выбрана заведомо больше глубины скин-слоя. (Обычно выбиралось $L \approx 3c/\omega_{pe}$, тогда коэффициент прохождения получался менее 0,03–0,05%.) Граничные условия для электрической и магнитной компонент поля

$$B_{z}(L,t) - E_{y}(L,t) = 2B_{0}\sin(\omega_{0}t),$$

$$B_{y}(L,t) + E_{z}(L,t) = 0,$$

$$B_{z}(0,t) + E_{y}(0,t) = 0,$$

$$B_{y}(0,t) - E_{z}(0,t) = 0,$$

$$E_{x}(L,t) = E_{x}(0,t) = 0$$
(3)

соответствуют условиям излучения на границах системы x = 0 и x = L и учитывают отсутствие разделения заряда (поляризации) на них.

Краевые условия для частиц имеют следующий вид: справа (x = L) частицы отражаются зеркально, что соответствует резкой границе «плазма–вакуум»: $f_e(\mathbf{v})|_{v_x>0} = f_e(\mathbf{v})|_{v_x<0}$; слева моделируется контакт горячего скин-слоя с основным объемом плазмы, где электроны имеют максвелловское распределение с температурой, соответствующей их мгновенной средней по скин-слою энергии. Очевидно, что при сохранении первых двух моментов функции распределения:

$$\boldsymbol{x} = 0: \quad \begin{cases} \int\limits_{v_x < 0} d\mathbf{v} f_e(\mathbf{v}) |v_x| = \int\limits_{v_x > 0} d\mathbf{v} f_M(\mathbf{v}) v_x, \\ \int\limits_{v_x < 0} d\mathbf{v} f_e(\mathbf{v}) = \int\limits_{v_x > 0} d\mathbf{v} f_M(\mathbf{v}) \end{cases}$$
(4)

граничное условие описывает вынос тепла из скин-слоя:

$$D(t) = \int\limits_{v_x < 0} d\mathbf{v} \, f_e(\mathbf{v}) rac{mv^2}{2} |v_x| > \int\limits_{v_x > 0} d\mathbf{v} \, f_M(\mathbf{v}) rac{mv^2}{2} v_x.$$
 (5)

При численной реализации граничных условий (4) на каждом временном шаге вылетающие частицы замещаются новыми, с той же средней по скин-слою энергией, но уже изотропно распределенной по Максвеллу. Эти новые частицы помещаются в узкую приграничную область δx . В ходе экспериментов было обнаружено, что процесс взаимодействия лазер-плазма в определенной степени зависит от того, какова величина δx . В частности, если частицы равномерно распределяются по всей расчетной области [7], то резко увеличиваются коэффициент поглощения и средняя энергия частиц из-за искусственной «максвеллизации» и «изотропизации» распределения электронов в скин-слое.

На каждом прогоне контролировались следующие величины: средняя по длине области функция распределения электронов, значения электрических и магнитных полей в плазме, временная зависимость температуры электронов

$$T_{e\alpha}(t) = rac{1}{Ln_e} \int\limits_0^L dx \int d\mathbf{v} \, m v_{lpha}^2 f_e(\mathbf{v})$$
 (6)

по каждой из координатных осей ($\alpha = x, y, z$), временная зависимость электрического поля прошедшей $E_t(t)$ и отраженной $E_r(t)$ волн и поток энергии D(t) через левую границу плазмы (5).

2. Результаты и обсуждение

В численных экспериментах исследовались зависимости величины поглощенной энергии лазера и температуры электронов от мощности импульса и плотности плазмы. Фактически взаимодействие характеризуется двумя безразмерными параметрами: относительной лазерной частотой ω_0/ω_{pe} (ω_{pe} электронная плазменная частота) и эффективным полем волны накачки $|eB_0|/(m\omega_{pe}c)$. При этом оба параметра должны быть меньше единицы в области применения модельных уравнений (1).

Значения ω_0/ω_{pe} задавались в диапазоне от 0,35 до 0,035, что соответствует плотности плазмы в 10 ÷ 1000 раз больше критической, а параметр $|eB_0|/(m\omega_{pe}c)$ — в диапазоне от 0,03 до 0,3, что соответствует интенсивности лазерного излучения от 10¹⁷ до 10²⁰ Вт/см². Все расчеты проводились на временном интервале порядка 10 периодов волны накачки. Рассматривать более продолжительные интервалы не было необходимости, ибо за время двух-трех периодов достигалось квазистационарное состояние. Входные и выходные параметры экспериментов представлены в таблице.

Номер варианта		1	2	3	4	5	6
Амплитуда накачки	$eB_0/(m\omega_{pe}c)$	0,03	0,1	0, 3	0,1	0, 3	0,1
Лазерная частота	ω_0/ω_{pe}	0,0 35	0,0 35	0,0 35	0,1	0,1	0,35
Коэффициент поглощения	A, %	0,12	0, 3 6	0, 53	0, 24	0, 53	0,0 8
Падение потенциала	$c\Delta arphi/(mc^2)$	$3 \cdot 10^{-3}$	$1,9 \cdot 10^{-2}$	$1, 7 \cdot 10^{-1}$	$6 \cdot 10^{-3}$	$6 \cdot 10^{-2}$	$2 \cdot 10^{-3}$
Средняя температура электронов	$T_{ex}/(mc^2)$	$1,0 \cdot 10^{-4}$	$1, 3 \cdot 10^{-3}$	$0, 7 \cdot 10^{-2}$	$0, 7 \cdot 10^{-3}$	$5, 2 \cdot 10^{-3}$	$0, 3 \cdot 10^{-3}$
	$T_{ey}/(mc^2)$	$1, 6 \cdot 10^{-4}$	$1,6\cdot 10^{-3}$	$1,2\cdot 10^{-2}$	$1,6\cdot 10^{-3}$	$1,1\cdot 10^{-2}$	$1, 3 \cdot 10^{-3}$
	$T_{ez}/(mc^2)$	$0, 1 \cdot 10^{-4}$	$0, 2 \cdot 10^{-3}$	$1, 4 \cdot 10^{-3}$	$0, 2 \cdot 10^{-3}$	$1, 6 \cdot 10^{-3}$	$0, 15 \cdot 10^{-3}$

Основные параметры и результаты расчетов

Отметим основные результаты расчетов. Очень быстро (через несколько временных шагов) устанавливалось пространственное распределение электрических и магнитных полей в плазме (рис. 1): плавное затухание величин E_y и B_z от «входной» плоскости x = L (более чем на порядок по длине области).

Рис. 1. Характерные пространственные распределения электрического (*a*) и магнитного (δ) полей (вариант 5, $t\omega_{pe} = 1000$)

Энергия прошедшего излучения оказывалась пренебрежимо малой по сравнению с энергией падающего, при этом временная зависимость практически сохранялась. Последнее говорит о малом влиянии нелинейных эффектов на электромагнитные поля в рамках рассматриваемой модели. Отраженное поле тоже имело синусоидальный характер, причем амплитуда его была близка к амплитуде падающего, что указывает на малость коэффициента поглощения А (менее 1%, см. таблицу). Этот же результат подтверждается аналитически. На каждом прогоне проверялся закон сохранения энергии в квазистационарном состоянии: $AI_0 = TI_0 + D$, где $I_0 = cB_0^2/8\pi$ — интенсивность падающей волны, а T — коэффициент прохождения энергии волны. Поскольку в нашем случае $T \ll A$, можно положить $A = D/I_0$. С другой стороны, вычитая поле падающей волны $B_0(t)$ из полного магнитного поля на правой границе: $B_z(L,t) - B_0(t) = B_{\text{out}}(t)$, получим коэффициент отражения $R = [B_{out}(t)]_{max}^2/B_0^2$ и затем вычислим коэффициент поглощения A = 1 - R. Оба метода дают одинаковые результаты в поздней стадии расчетов, когда достигается квазистационарное состояние. Из таблицы следует, что коэффициент поглощения пропорционален плотности лазерного излучения и плотности плазмы в степени 0,35-0,4, хотя эти данные можно рассматривать как предварительные.

Средняя температура электронов (6) почти линейно зависит от интенсивности лазерного излучения (примерно как $I_0^{0,9}$) и практически обратно пропорциональна плотности плазмы. Из рис. 2 видно, что энергия частиц сильно анизотропна и осциллирует во времени с удвоенной лазерной частотой. Колебания в направлении поляризации лазерного луча сдвинуты на четверть периода вперед относительно колебаний в других направлениях. Это напрямую связано со сдвигом фазы между электрической и магнитной частями силы Лоренца, действующей на электропы в паправлениях x и y. Амплитуда колебаний энергии в направлении y сопоставима со средним значением. Этот факт и почти линейная зависимость T_{ey} от I_0 показывают, что средняя энергия электронов примерно равна энергии осцилляторного движения частиц в самосогласованном электрическом поле. Амплитуда колебаний и средняя величина энергии электронов по x меньше, чем по y (что связано с действием лишь магнитной составляющей силы Лоренца вдоль оси x), при этом разница между ними растет с уменьшением плотности плазмы. Выравнивание x- и y-компонент энергии можно приписать падению электростатического потенциала в скин-слое, поскольку магнитное поле само по себе не совершает работы над частицей. Как видно из таблицы, в вариантах 2, 4 и 6 средняя энергия электронов в направлении y почти та же самая, а падение потенциала увеличивается с ростом плотности плазмы, так как увеличивается поток поглощенной энергии. Это падение потенциала препятствует выходу электронов из скин-слоя и, следовательно, приводит к росту энергии по оси x. Распределение электростатического потенциала в расчетной области (рис. 3) подкрепляет это утверждение. Заметим,

Рис. 2, а, б. Временные зависимости температуры электронов вдоль оси у (а) и оси х (б) (вариант 5)

Рис. 2, в. Временные зависимости температуры электронов вдоль оси z (вариант 5)

что некоторый рост температуры частиц по оси z связан с реализацией граничных условий (4): быстрые электроны, вылетевшие через границу x = 0, замещаются усредненными по энергии частицами с изотропным распределением скоростей.

Коэффициент потока энергии $f = AI_0/n_e T_e v_{ex}$, где $T_e = (1/3)(T_{ex} + T_{ey} + T_{ez})$ — температура электронов, $v_{ex} = (T_{ex}/m)^{1/2}$ — их средняя скорость по оси x, в наших расчетах несколько убывает с падением интенсивности излучения лазера и увеличивается с ростом плотности плазмы, изменяясь от $f \approx 0, 6$ в вариантах 1 и 5 до $f \approx 0, 4$ в вариантах 3 и 6. В связи с вышесказанным интересна функция распределения электронов $f_e(v_x)$, усредненная по периоду волны

Рис. 3. Характерное пространственное распределение электростатического потенциала (вариант 5, $t\omega_{pe} = 1000$)

накачки и глубине скин-слоя (рис. 4,*a*). Виден «горячий» хвост энергонесущих электронов и обратный поток холодных частиц. Энергия горячих электронов приблизительно на порядок больше средней. Это соотношение примерно соответствует величине падения потенциала в скин-слое. Средняя скорость холодных электронов, образующих обратный ток, сопоставима с тепловой скоростью электронов и превышает звуковую скорость ионов для любых разумных значений их масс. Этот обратный ток может быть причиной ионно-звуковой неустойчивости и дополнительного торможения потока энергии из расчетной области, которые не наблюдались в нашей модели с неподвижными ионами. В отличие от $\langle f_e(v_x) \rangle$ усредненная функция распределения электронов в направлении поляризации излучения $\langle f_e(v_y) \rangle$ (рис. 4,6) симметрична, однако заметно отличается от максвелловской (недостаток как медленных, так и быстрых частиц). Заметим также, что вследствие существенной анизотропизации плазмы можно было бы ожидать развития вайбелевской неустойчивости с характерным искажением профиля B_z [10, 11]. Однако (по-видимому, в силу фазовой конфигурации системы) этого не наблюдалось (рис. 1, б, см. также [7]).

Интересно сравнить результаты настоящих экспериментов с расчетами на базе $(1\frac{1}{2})$ -мерной полной электромагнитной модели с подвижными ионами и электрон-ионными столкновениями [6]. В работе [6] изучалось взаимодействие лазерного излучения (длина волны 0,8 мкм, интенсивность 10^{20} Вт/см²) с углеродной фольгой (толщина 60 нм, плотность электронов $n_e \approx 400 n_c$). Судя по данным [6], коэффициент поглощения составляет чуть менее 1,3%, но при этом

Рис. 4. Усредненная по времени функция распределения электронов вдоль оси x (a) и оси y (б) (вариант 3, $t\omega_{pe} = 1000$)

половина энергии поглощается ионами. Таким образом, электронное поглощение по данным [6] почти совпадает с полученным в вариантах 3 и 5 с похожими параметрами ($\sim 0, 5\%$). Температура электронов в работе [6] была 26 кэВ, что примерно в 4,5 раза больше полученного в данных расчетах значения ~ 6 кэВ. Однако бесстолкновительный режим в [6] уже дал температуру 11 кэВ при тех же параметрах. Кроме того, в настоящей работе толщина слоя плазмы в 4 раза меньше, чем в работе [6], и граничные условия обеспечивают дополнительное охлаждение системы. Таким образом, можно сделать вывод, что настоящие результаты находятся в разумном соответствии с полученными ранее. Вместе с тем сравнение показывает, что учет столкновений важен даже для случая большой мощности излучения, поскольку они увеличивают поглощение энергии скин-слоем.

Заключение

Исследован процесс поглощения лазерного излучения и нагрева электронов в сверхплотной плазме с резкой границей. Использование дискретного дарвинского моделирования позволило адекватно описать непотенциальное движение частиц в сильных электромагнитных полях и рассмотреть нелинейный случай, когда осцилляторная энергия колебания электронов сравнима с их тепловой энергией. Основные результаты исследования состоят в следующем:

1) величина коэффициента поглощения составляет менее 1% и медленно растет с ростом мощности излучения лазера;

2) распределение скоростей электронов сильно анизотропно и порождает большой обратный ток, который может вызвать неустойчивость в скин-слое;

3) величина средней энергии электронов соответствует модели «почти свободного потока энергии частиц», что обусловливает относительно низкие температуры электронов.

Авторы признательны В.Т. Тихончуку за исключительно полезные обсуждения задачи.

Литература

- 1. Luther-Davies B., Gamaly E.G., Wang Y. et al. // Laser Physics. 1991. 1. P. 325.
- Milchberg H.M., Freeman R.R. // Phys. Fluids. 1990. B2.
 P. 1395; Fedosejevs R., Ottmann R., Sigel R. et al. // Appl.
 Phys. 1990. B 50. P. 79; Chaker M., Kieffer J.C., Matter J.P. et al. // Phys. Fluids. 1991. B 3. P. 167.
- Tabak M., Hammer J., Glinsky M.E. et al. // Phys. Plasmas. 1994. 1, No. 5. P. 1626; Jiang Z., Kieffer J.C., Matter J.P. et al. // Ibid. 1995. 2, No. 5. P. 1702.
- Андреев А.А., Гамалий Е.Г., Новиков В.Н. и др. // Письма в ЖЭТФ. 1992. 74. С. 973.
- Wilks S.C., Kruer W.L., Tabak M., Langdon A. B. // Phys. Rev. Lett. 1992. 69. P. 1383.
- 6. Denavit J. // Phys. Rev. Lett. 1992. 69. P. 3052.
- 7. Бородачев Л.В., Тихончук В.Т. // Физ. плазмы. 1993. **19**, № 6. С. 813.
- Нильсон К., Льюис Г. // Управляемый термоядерный синтез. М., 1980. С. 395.
- Бородачев Л.В. // Вестн. Моск. ун-та. Физ. Астрон. 1993. № 3. С. 87.
- 10. Weibel E.S. // Phys. Rev. Lett. 1959. 2. P. 83.
- 11. Быченков В.Ю., Новиков В.Н., Силин В.П., Тихончук В.Т. // Физ. плазмы. 1991. 17. С. 403.

Поступила в редакцию 03.10.97