ценных советов, а также О.П.Шаталову за постоянное внимание к работе.

Работа поддержана Российским фондом фундаментальных исследований (грант 95-01-00415), а также грантом INTAS-RFBR № 95-0510.

Литература

- 1. *Черчиньяни К.* Теория и приложения уравнения Больцмана. М., 1978.
- 2. Mott-Smith H.M. // Phys. Rev. 1951. 82. P. 885.
- 3. Ступоченко Е.В., Лосев С.А., Осипов А.И. Релаксационныс процессы в ударных волнах. М., 1965.
- 4. Генич А.П., Куликов С.В., Манелис Г.Б. и др. // Изв. АН СССР, сер. Механика жидкости и газа. 1990. № 3. С. 134.
- 5. Башлыков А.М., Великодный В.Ю. // Письма в ЖТФ. 1989. 15, № 5. С. 24.

- 6. Лосев С.А., Забелинский И.Е., Романенко Ю.В., Шаталов О.П. Отчет Ин-та механики МГУ. 1989, № 3836.
- 7. Лосев С.А., Забелинский И.Е., Романенко Ю.В., Шаталов О.П. Отчет Ин-та механики МГУ. 1991, № 4158.
- Забелинский И.Е., Романенко Ю.В., Шаталов О.П. // Хим. физика. 1993. 12. С. 334.
- Romanenko Y.V., Shatalov O.P., Zabelinsky I.E. // Proc. 19th Intern. Symp. on Shock Waves. Marseille, July 26-30 1993. V. 2. P. 289.
- 10. Зайдель А.Н., Островская Г.В., Островский Ю.И. Техника и практика спектроскопии. М., 1972.
- 11. Физические величины: Справочник / Под ред. И.С. Григорьева, Е.З. Мейлихова. М., 1991.
- Собельман И.И. Введение в теорию атомных спектров. М., 1977.

Поступила в редакцию 15.10.97

ФИЗИКА ТВЕРДОГО ТЕЛА

УДК 539.23

СТРУКТУРНЫЕ ОСОБЕННОСТИ ПЛЕНОК AI, Ti, Pd, Ta, ПОЛУЧЕННЫХ В РАЗРЯДЕ С ОСЦИЛЛИРУЮЩИМИ ЭЛЕКТРОНАМИ

В. В. Бибикова, Е. В. Лихушина, С. В. Свешников, Г. В. Смирницкая

(кафедра общей физики для естественных факультетов)

Изучена структура тонких пленок Al, Ti, Pd и Ta, напыленных на стеклянные подложки в разряде с осциллирующими электронами (POЭ) в двух режимах разряда (разные давления и токи разряда). Получены значения скоростей напыления и потока частиц. Содержание в пленках Kr оказалось порядка десятых долей процента. Структурные исследования показали, что пленки имеют хорошо выраженную текстуру; искажение дифракционной картины по отдельным направлениям говорит о наличии дефектов упаковки. Показано, что для легких металлов (Al, Ti) структура пленок зависит от режима разряда. Для тяжелых металлов (Pd, Ta) такой зависимости нет. Все пленки, полученные в режиме II, менее дефектны, чем в режиме I.

В работе изучалась структура тонких металлических пленок Al, Ti, Pd и Ta, напыленных на стеклянные подложки в разряде с осциллирующими электронами (РОЭ). Описание установки и методика получения пленок даны в работе [1]. Пленки имели различные типы атомного упорядочения. Толщина пленок варьировалась от 0,15 до 1,3 мкм.

Напыление пленок проводилось при анодном напряжении $V_a = 2$ кВ, напряженности магнитного поля H = 320 Э в двух режимах [2,3], соответствующих разным давлениям инертного газа ($P_{\rm KrI} < P_{\rm KrII}$), распределениям потенциала в ячейке, величинам разрядного тока ($I_{\rm I} < I_{\rm II}$), потокам атомов распыляемых металлов ($N_{\rm metI} < N_{\rm metII}$) и их энергиям, а также потокам и энергиям энергичных нейтралов, отраженных от катода и поступающих на подложку:

I режим: $P_{\rm Kr} = (5 \div 6) \cdot 10^{-6}$ Торр, ток разряда J = 0, 3-0, 4 мА, энергия нейтралов *E* порядка сотен электрон-вольт;

II режим: $P_{\rm Kr} = (2 \div 4) \cdot 10^{-5}$ Topp, J = (2, 5-3, 5) мА, E порядка десятков электрон-вольт.

В табл. 1 представлены полученные значения скоростей напыления S, скорости напыления на единицу тока S' и числа частиц N, поступающих на единицу площади подложки в единицу времени для пленок Al, Ti, Ta, Pd, напыленных в РОЭ. Относительная ошибка измерений около 2%.

Таблица 1

	I режим				П режим			
Характеристики	2J = 0,8 MA				2J=4,1мА			
напыления	Al	Ti	Та	Pd	Al	Ti	Та	Pd
$S\left(\frac{\dot{A}}{MHH}\right)$	7,6	11,3	7,1	18	18,5	24	18	42,3
$S' \left(rac{ m \AA}{ m MHH\cdot A}\cdot 10^3 ight)$	19,9	29,5	16,4	40,8	9	11,6	9	21
$N\left(\frac{\text{MOJ}}{\text{CM}^2 \cdot \text{MUH}} \cdot 10^{15}\right)$	11	15,4	5,4	16,5	27	32,5	13,8	39

Таблица З

Содержание Кг в пленках измерялось омегатроном ИПДО-1 по количеству газа, выделенного при импульсном прогреве пленки известной толщины. Инертный газ попалает на анол и в пленки в виде энергичных нейтралов, образующихся при перезарядке ионов инертного газа вблизи катода и при отражении от него [4]. Чем больше отношение атомных масс $M_{
m at.met}/M_{
m at.gas}$ и чем больше угол падения ионов инертного газа на катод, тем большая доля ионов отражается от катода, как быстрые нейтральные атомы, и тем больше их энергия. Содержание газа в пленках определяется соотношением потоков атомов металла и атомов газа, поступающих на пленку, и увеличивается с ростом атомного номера Z материала мишени (из-за роста кинетической энергии отраженных от мишени атомов Kr и вероятности их внедрения в пленку). В табл. 2 приведены значения концентраций Kr, входящего в состав металлических пленок.

Таблица 2

Режим	Содержание Кr, %						
I CARITA	Al	Ti	Та	Pd			
Ι	0,2	0,14	1,34	0,52			
II	0,07	0,05	0,42	0,15			

В режиме I распыленные атомы металла и энергичные нейтралы достигают подложки, не испытывая соударений с атомами газа в объеме и сохраняя свою энергию. Поток энергичных нейтралов, поступающих на подложку, растет с увеличением атомного веса металла катода. В режиме II увеличение давления газа и уменьшение длины свободного пробега сопровождается рассеянием и атомов металла, и энергичных нейтралов при движении их к подложке. Рассеяние атомов металла будет тем больше, чем меньше отношение масс $M_{\rm met}/M_{\rm gas}$, что согласуется с результатами, представленными в табл. 1. Рассеяние энергичных нейтралов в режиме II сопровождается уменьшением концентрации газа в пленке.

Изменение потоков частиц и их энергий с изменением режима отражается на условиях зарождения, роста и на структуре пленок. Структура пленок зависит также от рода напыляемого металла.

Структурные исследования проводились на рентгеновском дифрактометре на Fe- K_{α} излучении. Опыты показывают, что пленки обладают структурой, свойственной макрообразцам. Для ряда структур характерно искажение дифракционной картины по отдельным направлениям, что говорит о наличии деформационных дефектов упаковки. На это указывает как смещение дифракционных линий относительно их положений в массивных поликристаллах, так и их размытие.

В табл. 3 приведены значения параметров для исследуемых пленок и значения полуширины ($\beta(2\theta)$) дифракционных линий. Как видно из табл. 3, пленки имеют разные типы упаковок, однако для всех пленок по направлению наиболее плотных упаковок

Пленка и тип	Параметры решетки (Å)			Полуширина линий (градусы)		
упаковки	Табличные	Экспери	иментальные	β^0		
А1 (ГЦК)	4,05	(111) (200)	4,05 (I) 4,05 (II) 4,07 (I) 4,03 (II)	0,75 (I) 0,30 (II) 1,50 (I) 1,08 (II)		
Ті (ГПУ)	2,95(a) 4,69(c)	(100) (001)	2,95 (I) 2,95 (II) 4,70 (I) 4,70 (II)	2,00 (I) 0,91 (II) 0,83 (I) 0,66 (II)		
Pd (ГЦК)	3,89	(111) (200)	3,89 (I) 3,89 (II) 3,89 (I) 3,88 (II)	0,75 (I) 0,75 (II) 1,08 (I) 1,17 (II)		
Та (ОЦК)	3,30	(110) (200)	3,33 (I) 3,30 (II) 3,26 (I) 3,24 (II)	1,37 (I) 1,74 (II) 1,17 (I) 1,39 (II)		

В скобках римскими цифрами указан режим разряда.

([111] для ГЦК, [110] для ОЦК, [001] для ГПУ) искажение решетки наименьшее, т. е. параметры наиболее близки к табличным, а уширение линий мало. Для пленок относительно легких металлов (Аl ГЦК) искажение решетки происходит по направлению [100] (линия (200)), причем для пленок, напыленных в режиме I, наблюдаются сдвиг дифракционной линии, свидетельствующий об увеличении параметра решетки, а также заметное уширение линии. Это говорит о наличии в решетке деформационных дефектов упаковки [5]. Для пленок Ti с ГПУ-решеткой такие искажения не приводят к заметному смещению линий на дифрактограммах, а проявляются лишь в уширении линий.

Для пленок Al, полученных в режиме II, искажения решетки обусловлены, по-видимому, в основном дефектами типа вакансий, поскольку сдвиг линий ведет к «уменьшению» параметра решетки. Для пленок Ti, полученных в этом режиме, характерна структура с меньшим содержанием дефектов.

Пленки Pd имеют структуру, наиболее близкую к структуре массивного кристалла и не зависящую от режима напыления. Для этого же металла характерна и наиболее высокая скорость напыления (см. табл. 1), что, по-видимому, обусловливает наиболее совершенную структуру получаемых пленок.

Для пленок более тяжелого металла Та (ОЦК) характерны искажения типа дефекта упаковки. Такие искажения могут быть вызваны условиями роста, вакансиями, порами, а также неполным сдвигом решетки вдоль плоскости скольжения. Значительного влияния режима разряда на особенности структуры здесь также не наблюдается.

Оценка размеров области когерентного рассеяния (ОКР) проводилась по стандартной методике [5]. Для более легких металлов (Al и Ti) оценки показывают, что для пленок, напыленных в режиме II, ОКР имеют величину около 400 Å (Al) и 100 Å (Ti), а для пленок, полученных в режиме I, они уменьшаются примерно в 2 раза. Оценка величин ОКР для пленок Ti была затруднена, так как необходимо было учитывать размытие линий дифракции из-за дефектов упаковки. Для более тяжелых металлов (Pd и Ta) величина ОКР была порядка 100Å и не наблюдалось влияния режима напыления.

Полученные результаты позволяют сделать вывод, что для легких металлов (Al, Ti) структура пленок, полученных в РОЭ, зависит от режима разряда. Для тяжелых металлов (Pd, Ta) такой зависимости не наблюдается. Все пленки, полученные в режиме II, менее дефектны, чем пленки, полученные в режиме I.

УДК 537.311.322

Литература

- Кононкова Н. Н., Рейхрудель Э. М., Смирницкая Г. В. // ЖЭТФ. 1980. 50, № 3. С. 599.
- 2. Рейхрудель Э. М., Смирницкая Г. В. // Итоги науки и техники. Сер. Электроника и ее применение. 1976. 8. С. 43.
- 3. Смирницкая Г. В., Свешников С. В., Газднев Д. М. и др. // Поверхность. Физика, химия, механика. 1992. № 8. С. 86.
- Jepsen R. L. // Proc. 4 Intern. Vac. Congr. Manchester, 1968.
 V. 1. P. 317.
- 5. Ивернова В.И., Ревкевич Г.П. Теория рассеяния рентгеновских лучей. М., 1978. С. 274.

Поступила в редакцию 02.07.97

СИЛЬНАЯ ЛОКАЛИЗАЦИЯ НОСИТЕЛЕЙ ТОКА В МНОГОСЛОЙНЫХ СТРУКТУРАХ InAs/GaAs С КВАНТОВЫМИ ТОЧКАМИ

В. А. Кульбачинский, В. Г. Кытин, Р. А. Лунин, А. В. Голиков, А. В. Демин, И. Г. Малкина, Б. Н. Звонков, Ю. Н. Сафьянов

(кафедра физики низких температур и сверхпроводимости)

Исследованы транспортные и оптические свойства InAs/GaAs многослойных структур p- и n-типа с квантовыми точками в зависимости от количества осажденного InAs. Обнаружено, что квантовые точки InAs в GaAs формируют двумерные электронные или дырочные слои, приводящие к осцилляциям Шубникова-де Гааза. Измеренные температурные зависимости сопротивления в направлениях [110] и [110] в диапазоне температур 1,6 К ÷ 300 К показали анизотропию сопротивления. Экспериментальные факты свидетельствуют о локализации носителей тока в квантовых точках при понижении температуры. По спектрам фотолюминесценции выявлена поляризация света, испущенного в плоскости структуры.

Введение

Квантовые точки InAs, в которых движение электронов и дырок квантовано по всем трем направлениям, формируются упругими напряжениями на поверхности GaAs в процессе гетероэпитаксиального роста образца [1–3]. Оптические свойства таких структур с квантовыми точками интенсивно исследуются в настоящее время, что связано с их применением в приборах [4]. Менее изучены транспортные свойства этих структур. В настоящей работе представлены результаты исследования низкотемпературных транспортных свойств и фотолюминесценции многослойных структур InAs/GaAs с квантовыми точками.

1. Методика измерений и образцы

Структуры были выращены методом жидкофазной эпитаксии на полуизолирующей подложке GaAs (001), разориентированной на угол 3° по отношению к направлению [110]. Образцы содержали несколько (10 ÷ 20) периодов GaAs толщиной 0,1 мкм, дель-

та-слоя углерода (для образцов *р*-типа), спейсера толщиной 5-6 нм и слоя квантовых точек InAs. Образцы *п*-типа специально не легировались. На рис. 1 приведен общий вид структуры с квантовыми точками, предположительно расположенными цепочками вдоль направления $[\overline{1}10]$ (это обсуждается далее). Сверху структуры покрывались слоем GaAs толщиной 0,1 мкм. Некоторые параметры образцов приведены в таблице. Образование квантовых точек начинается, когда количество InAs на поверхности роста превышает 0,8*l*, где *l* — толщина монослоя [5]. Спектры фотолюминесценции образца, возбужденного Не-Ne лазером, измерялись при температурах T = 300 К и 77 К. Измерения проводились на квадратных образцах со сторонами, ориентированными вдоль [110] и [110] направлений. Температурные зависимости сопротивления были измерены в диапазоне температур 1,6 К ÷ 300 К, эффект Шубникова-де Гааза, магнетосопротивление R(B) и эффект Холла измерялись в магнитных полях $B \leq 10$ Tл, создаваемых сверхпроводящим соленоидом.