АТОМНАЯ И ЯДЕРНАЯ ФИЗИКА УДК 539.12

МОДЕЛЬ ОПИСАНИЯ ПРОЦЕССОВ РОЖДЕНИЯ $\pi^+\pi^-$ -ПАР НА ПРОТОНЕ РЕАЛЬНЫМИ И ВИРТУАЛЬНЫМИ ФОТОНАМИ В ОБЛАСТИ ЭНЕРГИЙ ВОЗБУЖДЕНИЯ НУКЛОННЫХ РЕЗОНАНСОВ

Е. Н. Головач, В. С. Замиралов, Б. С. Ишханов, В. И. Мокеев, Дж. Рико^{*)}, М. Рипани^{*)}, Д. А. Родионов

 $(H {\cal U} {\cal H} {\cal I} {\cal P} {\cal P})$

Предложена модель описания реакций $\gamma_{r,v}p \to \pi^+\pi^-p$ под действием реальных и виртуальных фотонов. Модель находится в хорошем согласии с имеющимися экспериментальными данными и может быть использована для обработки результатов новых экспериментов по рождению $\pi^+\pi^-$ -пар на протонах реальными и виртуальными фотонами. В частности, модель может быть применена для нахождения электромагнитных формфакторов нуклонных резонансов.

Введение

Исследования структуры нуклонных резонансов в переходной области между конфайнментом и асимптотической свободой кварков являются одним из приоритетных направлений современной физики атомного ядра и элементарных частиц [1]. Качественно новые возможности изучения структуры нуклонных резонансов N^* открывают будущие эксперименты в центре TJNAF (США) [2, 3].

*) Istituto Nazionale di Fisica Nucleare, Sez. di Genova, Genova, Italia.

В настоящее время данные об электромагнитных формфакторах резонансов N* весьма ограниченны. Основная информация об электромагнитных формфакторах N^* получена в инклюзивном e, e'-рассеянии [4] и в реакциях электророждения пионов на нуклонах [5]. Данные получены лишь для резонансов, наиболее сильно возбуждаемых реальными фотонами. Практически отсутствуют данные по электромагнитным формфакторам большого числа N* с массами свыше 1,5 ГэВ. Процессы с образованием двух пионов становятся основными каналами реакций под действием реальных и виртуальных фотонов по мере роста величины W. Конституентные кварковые модели [6-8] предсказывают наличие большого числа состояний N^* с массами между 1,8 и 2,5 ГэВ, не обнаруженных в эксперименте, — так называемых missing-резонансов. Согласно кварковым моделям связь этих резонансов с каналами, приводящими к образованию двух пионов, оказывается значительно большей, чем связь с однопионным каналом. Таким образом, исследование реакций под действием фотонов с образованием в конечном состоянии двух пионов открывает хорошие возможности исследования N* с массами выше 1,5 ГоВ.

Вместе с тем согласно [5] вклады N^* в сечение двухпионного фото- и электророждения не превышают 30%, поэтому определение формфакторов N^* из экспериментальных данных возможно в ближайшее время лишь в рамках моделей [9, 10].

В настоящей работе кратко описывается применяемая нами модель реакции рождения двух пионов на протоне под действием реальных и виртуальных фотонов в области величин W, отвечающих возбуждению нуклонных резонансов. Развитый метод и программный модуль будут использованы при анализе данных планируемого эксперимента E-93-006 в Hall B TJNAF [11].

1. Описание модели

Диаграммы Далитца систем $\pi^+\pi^-$ и π^+p для реакции рождения двух пионов на протонах обнаруживают две полосы с центрами тяжести, соответствующими величинам $S_{\pi^+p} = 1,52$ ГэВ² и $S_{\pi^+\pi^-} = 0,55$ ГэВ² [12, 13]. Наличие таких полос свидетельствует об образовании и последующем распаде резонансных состояний $\Delta^{++}(1236)$ изобары и $\rho(769)$ мезона в процессах, показанных на рис. 1.

Рис. 1. Основные двухчастичные механизмы рождения пар пионов на протоне реальными и виртуальными фотонами

Поскольку диаграммы Далитца для реакций $\gamma_{r,v}p \to \pi^+\pi^-p$ не обнаруживают каких-либо иных

особенностей помимо отмеченных выше, оставшиеся процессы в настоящем варианте модели описываются в приближении фазового объема.

Реакции $ep \rightarrow e\pi^+\pi^-p$ с тремя адронами в конечном состоянии в приближении однофотонного обмена описываются дифференциальным сечением (см., напр., [14]):

$$\begin{aligned} \frac{d^5\sigma}{d\Phi^5} &= \frac{1}{4K_LM} \frac{1}{2} L_{\mu\nu} W^{\mu\nu} \frac{1}{32W^2} \frac{1}{(2\pi)^5}, \\ K_L &= \frac{W^2 - M^2}{2M}, \quad W = \sqrt{(q+p_p)^2}, \quad (1) \\ d\Phi^5 &= dS_{\pi^+p} dS_{\pi^+\pi^-} d\Omega_p d\alpha, \end{aligned}$$

где M — масса нуклона, q, p_p — 4-импульсы фотона в начальном состоянии и протона-мишени, $4K_LM$ поток падающих частиц, $L_{\mu\nu}$ — известный лептонный тензор, $d\Omega_p$ — элемент телесного угла эмиссии протона, α — угол между плоскостью, образованной векторами импульсов пары пионов, и плоскостью реакции, определяемыми в системе центра инерции реакции, $S_{\pi^+p}, S_{\pi^+\pi^-}$ — квадраты инвариантных масс систем π^+p и $\pi^+\pi^-$.

Вся информация о механизмах процессов с участием адронов содержится в адронном тензоре $W^{\mu\nu}$, представляющем собой билинейную комбинацию адронных токов $J_{\mu}(W, p, q, \lambda_s, \lambda_p)$:

$$W_{\mu\nu} = \frac{1}{2} \sum_{\lambda_s, \lambda_p} J^*_{\mu}(W, p, q, \lambda_s, \lambda_p) J_{\nu}(W, p, q, \lambda_s, \lambda_p),$$
(2)

где p — совокупность 4-импульсов адронов в конечном состоянии, λ_s и λ_p — совокупность спиральностей частиц в конечном состоянии и протона соответственно. В свою очередь адропные токи $J_{\mu}(W, p, q, \lambda_s, \lambda_p)$ выражаются через спиральные амплитуды трехчастичного процесса $\langle \lambda_s | T | \lambda_{\gamma} \lambda_p \rangle$ следующим образом:

$$arepsilon_{\mu}(\lambda_{\gamma})J_{\mu}(W,p,q,\lambda_{s},\lambda_{p})=\langle\lambda_{s}|T|\lambda_{\gamma}\lambda_{p}
angle,$$
 (3)

где $\varepsilon_{\mu}(\lambda_{\gamma})$ — вектор поляризации фотона со спиральностями $\lambda_{\gamma} = -1, 0, 1.$

Амплитуды процессов, показанных на рис. 1, описываются в предположении [15] факторизации амплитуд квазидвухчастичных процессов $\gamma_{r,v}p \rightarrow \pi^- \Delta^{++}$ и $\gamma_{r,v}p \rightarrow \rho p$ и амплитуд распадов промежуточных Δ^{++} -изобары и ρ -мезона соответственно. В приближении Брейта–Вигнера амплитуда процесса $\gamma_{r,v}p \rightarrow \pi^+\pi^- p$ описывается следующим образом:

$$\begin{split} \langle \lambda_s | T | \lambda_\gamma \lambda_p \rangle &= \sum_{\lambda_\Delta} \frac{\langle \lambda_\pi \lambda_\Delta | T | \lambda_\gamma \lambda_p \rangle \langle \lambda_\pi \lambda_p | T | \lambda_\Delta \rangle}{(p_{\pi^+} + p_p)^2 - m_\Delta^2 + i\Gamma_\Delta m_\Delta} + \\ &+ \sum_{\lambda_\rho} \frac{\langle \lambda_\rho \lambda_p | T | \lambda_\gamma \lambda_p \rangle \langle \lambda_\pi \lambda_\pi | T | \lambda_\rho \rangle}{(p_{\pi^+} + p_{\pi^-})^2 - m_\rho^2 + i\Gamma_\rho m_\rho}, \end{split}$$
(4)

Puc.~2. Зависимость сечения $d^2\sigma/dS_{\pi\pi}dS_{\pi p}$ от квадратов инвариантных масс систем $\pi^+\pi^-$ и π^+p при W=2 ГэВ

где $\langle \lambda_{\pi}\lambda_{\Delta}|T|\lambda_{\gamma}\lambda_{p}\rangle$, $\langle \lambda_{\rho}\lambda_{p}|T|\lambda_{\gamma}\lambda_{p}\rangle$ — амплитуды квазидвухчастичных процессов $\gamma_{r,v}p \to \pi^{-}\Delta^{++}$ и $\gamma_{r,v}p \to \rho p$, $\langle \lambda_{\pi}\lambda_{p}|T|\lambda_{\Delta}\rangle$, $\langle \lambda_{\pi}\lambda_{\pi}|T|\lambda_{\rho}\rangle$ — амплитуды распадов $\Delta^{++} \to \pi^{+}p$ и $\rho \to \pi^{+}\pi^{-}$, Γ_{Δ} , m_{Δ} , Γ_{ρ} , m_{ρ} — ширины и массы Δ -изобары и ρ -мезона. Две суммы в (4) отвечают двум диаграммам рис. 1. Амплитуды $\gamma_{r,v}p \to \pi^{-}\Delta^{++}$ и $\gamma_{r,v}p \to \rho p$ вычис-

лялись в модели [16], обобщающей известную модель [17]. В обеих моделях [16, 17] двухчастичные реакции описываются резонансными вкладами, отвечающими возбуждениям N^* во входном канале γp и их последующему распаду по каналам $\pi^- \Delta^{++}$ и *рр*, а также совокупностью нерезонансных процессов: борновских вкладов с учетом взаимодействия в начальном и конечном состояниях для канала $\pi^- \Delta^{++}$ и дифракционного рождения *р*-мезона для канала *рр*. В работе [17] были учтены 3 резонанса в реакции $\gamma_{r,v}p
ightarrow \pi^- \Delta^{++}$ и оценены вклады 2 резонансов в реакции $\gamma_{r,v}p \rightarrow \rho p$. В [16] были вычислены вклады всех сколько-нибудь существенных резонансов в обе реакции — 11 резонансов для $\gamma_{r,v}p \rightarrow \pi^- \Delta^{++}$ и 7 резонансов для $\gamma_{r,v}p \rightarrow \rho p$. Амплитуды сильных распадов были взяты нами здесь и в работе [16] из одного из последних анализов данных по процессам рождения Δ^{++} и ρ в πN -столкновениях [18].

Электромагнитные амплитуды возбуждения резонансов N^* с определенной спиральностью в конечном состоянии при $Q^2 = 0$, $A_{1/2}(0)$ и $A_{3/2}(0)$ взяты из [19]. При $Q^2 < 0$ данных практически нет. Определение из опыта величин $A_{1/2}(Q^2)$ и $A_{3/2}(Q^2)$ является

одной из основных целей в предстоящем на ускорителе СЕВАF эксперименте E-93-006 [11]. Амплитуды распадов $\Delta^{++} \rightarrow \pi^+ p$ и $\rho \rightarrow \pi^+ \pi^-$ в (3) вычислялись с помощью известных феноменологических лагранжианов (см., напр., [20]), с использованием значений ширин этих распадов из [19]. Существенным отличием в нашем подходе является учет интерференции двух рассматриваемых квазидвухчастичных процессов. (Обычно анализировалась просто сумма этих подпроцессов (см., напр., [13]).)

2. Обсуждение результатов

В рамках описанной модели выполнены расчеты дифференциальных сечений реакции $\gamma_{r,v}p \rightarrow$ $\pi^+\pi^- p$ (1) при $Q^2 = 0$ и $W = 1, 7 \div 2, 5$ ГэВ. На рис. 2 показано рассчитанное сечение $d^2\sigma/dS_{\pi^+p}dS_{\pi^+\pi^-}$, полученное путем интегрирования (1) по переменным Ω_p и α. Отчетливо наблюдаются резонансные структуры, обусловленные формированием в промежуточном состоянии Δ^{++} -изобары и ρ -мезона. Отличительной особенностью является значительная величина сечения при величинах S_{π^+p} и $S_{\pi^+\pi^-}$, далеких от резонансных. Это свидетельствует о важности использования данных по сечениям во всей кинематически разрешенной области изменения переменных S_{π^+p} и $S_{\pi^+\pi^-}$ для анализа динамики квазидвухчастичных процессов $\gamma_{r,v}p \rightarrow \pi^- \Delta^{++}$ и $\gamma_{r,v}p \rightarrow \rho p$. Возможности 4π -детектора CLAS [2] открывают широкие перспективы в данном направлении.

Рис. 3. Зависимость сечения $d\sigma/dS_{\pi^+p^-}$ (*a*) и $d\sigma/dS_{\pi^+\pi^-}$ (*б*) от квадрата инвариантной массы системы π^+p (*a*) и $\pi^+\pi^-$ (*б*) при W = 2 ГэВ

На рис. 3, а и б показаны дифференциальные сечения $d\sigma/dS_{\pi^+p}$ и $d\sigma/dS_{\pi^+\pi^-}$ реакции $\gamma p o \pi^+\pi^- p$ и вкладов в эту реакцию квазидвухчастичных каналов $\pi^- \Delta^{++}$ и ρp при величине W = 2 ГэВ. Как и следовало ожидать, в квазидвухчастичном процессе $\gamma p
ightarrow
ho p$ обнаруживается резонансное поведение распределения по $S_{\pi^+\pi^-}$ и бесструктурная зависимость от S_{π^+p} . Соответственно в реакции $\gamma p o \pi^- \Delta^{++}$ обнаруживается резонанс распределения по S_{π^+p} и бесструктурное поведение по $S_{\pi^+\pi^-}$. Эффекты интерференции этих двух каналов приводят к подъему распределения по инвариантной массе $\pi^+\pi^-$, когда значение $S_{\pi^+\pi^-}$ ниже резонансного, и к формированию хвоста распределения по инвариантной массе $\pi^+ p$ системы для значения $S_{\pi^+ p}$ выше резонансного. Эти эффекты наблюдались во всех экспериментах по фоторождению ρ -мезонов и Δ^{++} -изобары.

Проинтегрированные по фазовому объему рассчитанные величины сечений реакции $\gamma_{r,v}p \rightarrow \pi^+\pi^-p$ и квазидвухчастичных реакций $\gamma_{r,v}p \rightarrow \pi^-\Delta^{++}$ и $\gamma_{r,v}p \rightarrow \rho p$ сравнивались с экспериментальными данными [12, 21, 22]. Результаты приведены в таблице. При W = 1,7 ГэВ наблюдается хорошее согласие между вычисленными и измеренными сечениями обоих квазидвухчастичных процессов. Для $W \ge 2,0$ ГэВ выполненные расчеты удовлетворительно согласуются с экспериментальными данными для квазидвух-

Сравнение рассчитанных (σ_c) и измеренных (σ_m) интегральных сечений реакции $\gamma p o \pi^+ \pi^- p$

	$\pi^-\Delta^{++}$ -канал		рр-канал		$\pi^+\pi^-p$ -реакция	
<i>W</i> , ГэВ	$\sigma_c,$ мкб	<i>σ</i> _m , мкб	$\sigma_c,$ мкб	<i>σ_m</i> , мкб	<i>σ_с,</i> мкб	<i>σ_m</i> , мкб
1,7	34,13	35 ± 5^{2}	9,9	11 ± 3^2	41,2	68 ± 4^2
2,0	19,98	$9\pm1,2^{1}$ 12 ± 3^{3}	17,62	$21\pm 2^{3} \\ 27\pm 2^{3,4} \\ 19,2\pm 1,6^{1} \\ 21\pm 1,4^{1,4}$	37,39	$41,7\pm2,3^{1}$ 47 ± 3^{2}
2,476	14,31	5 ± 1^2 3,8±0,6 ¹ 3,6±0,4 ³	15,55	$\begin{array}{c} 21 \pm 3^2 \\ 17 \pm 3^{2,4} \\ 19,7 \pm 1,1^1 \\ 17 \pm 1,3^{1,4} \\ 18,6 \pm 1^3 \\ 21 \pm 1^{3,4} \end{array}$	31,16	$28\pm1,6^{1}\\32\pm1^{2}\\30,9\pm1^{3}$

¹ Работа [13].

² Работа [21].

³ Работа [22].

⁴ Два значения, взятые из одной работы, отвечают различным методам, использовавшимся для определения сечений квазидвухчастичных процессов.

частичного канала $\gamma_{r,v}p \to \rho p$, в то время как рассчитанные величины интегральных сечений в канале $\gamma_{r,v}p \to \pi^- \Delta^{++}$ более чем в два раза превосходят измеренные. Рассчитанные в [16] угловые распределения π^- -мезонов в квазидвухчастичной реакции $\gamma_{r,v}p \to \pi^- \Delta^{++}$, которые используются в настоящей работе при вычислении амплитуды реакции $\gamma_{r,v}p \to \pi^+\pi^-p$, обнаруживают хорошее соответствие с данными [21]. Возможными причинами расхождений рассчитанных и измеренных величин интегральных сечений $\gamma_{r,v}p \to \pi^- \Delta^{++}$ реакции могут быть неоднозначности в разделении вкладов резонансов и фона при определении сечений в этом парциальном канале. Подобная ситуация свидетельствует о необходимости развития модельно-независимых методов разделения сечения реакции $\gamma_{r,v}p \to \pi^+\pi^-p$ между вкладами каналов $\pi^- \Delta^{++}$, ρp и вкладом прямого формирования $\pi^+\pi^-p$ системы.

Заключение

Наши результаты показывают, что резонансные модели могут служить основой феноменологического описания двухпионного фоторождения при энергиях вплоть до 2,1-2,5 ГэВ. Мы полагаем, они же дадут возможность по данным предстоящих экспериментов на СЕВАГ по двухпионному электророждению на протонах рассчитать электромагнитные формфакторы резонансов N* с массой более 1,5 ГэВ. Имеющееся расхождение с опытом расчетного полного сечения реакции $\gamma_{r,v}p \to \pi^- \Delta^{++}$ указывает на необходимость развития модельно-независимых методов разделения сечения реакции $\gamma_{r,v}p
ightarrow \pi^+\pi^- p$ между каналами $\pi^{-}\Delta^{++}$, ρp и вкладом прямого образования $\pi^+\pi^-p$ системы. Ожидаемая точность эксперимента Е-93-006 может позволить осуществить модельно-независимое разделение сечения между вкладами различных каналов реакции.

Литератра

- 1. *Walecka J.D.* // AIP Conf. Proc. No. 269. (Newport News, Virginia, 1992). N.Y., 1993. P. 87.
- Domingo J.D., Carlini R.D., Mecking B.A., Mougey J.Y. // Ibid. P. 25.
- 3. Burkert V. Preprint CEBAF-PR-94-005.
- 4. Stoler P. // Phys. Reports. 1993. 266. P. 103.
- 5. Burkert V. Preprint CEBAF-PR-92-001.
- 6. Capstic S., Roberts W. // Phys. Rev. 1994. D49. P. 4570.
- 7. Koniuk R., Isgur N. // Phys. Rev. 1980. D21. P. 1868.
- 8. Koniuk R. // Nucl. Phys. 1982. B195. P. 452.
- Nozawa S., Blankleider B., Lee T.S.M. // Nucl. Phys. 1990. A513. P. 459.
- 10. Surya Y., Gross F. Preprint CEBAF-TH-95-04.
- 11. Burkert V., Ripani M. // Report at the Meeting of the CEBAF Program Advisory Committee PAC8 (June 13-17 1994).
- Struczinski S., Dittman P., Eckardt V. et al. // Nucl. Phys. 1976. B108. P. 45.
- Ballam J., Chadwick G.B., Gearhart R. et al. // Phys. Rev. 1972. D5. P. 545.
- 14. Биленький С.М. Лекции по физике нейтринных и лептон-нуклонных процессов. М., 1981.
- 15. Herndon D.J., Söding P. // Phys. Rev. 1975. D11. P. 3162.
- 16. Головач Е.Н., Замиралов В.С., Ишханов Б.С. и др. Препринт НИИЯФ МГУ 97-27/478. М., 1997.
- Lüke D., Söding P. // Springer Tracts in Modern Physics. 1971.
 59. P. 39.
- 18. Manley D.M., Salesky E.M. // Phys. Rev. 1992. D45. P. 4002.
- 19. Particle Data Group // Phys. Rev. 1996. D54. P. 2950.
- 20. *Неуен Ван Хьеу*. Лекции по теории унитарной симметрии элементарных частиц. М., 1967.
- 21. ABBHM-Collaboration // Phys. Rev. 1968. 175. P. 1669.
- 22. Sofair A. // Nucl. Phys. 1972. B42. P. 369.

Поступила в редакцию 10.10.97