ОПТИКА И СПЕКТРОСКОПИЯ

УДК 535.241.13

МОДУЛЯЦИЯ СВЕТА АКУСТИЧЕСКИМИ ВОЛНАМИ В ИЗОТРОПНОЙ СРЕДЕ ПРИ СИЛЬНОМ АКУСТООПТИЧЕСКОМ ВЗАИМОДЕЙСТВИИ

В. И. Балакший, И. А. Нагаева

(кафедра физики колебаний)

Теоретически исследована дифракция света на амплитудно-модулированной акустической волне в режиме сильного акустооптического взаимодействия. Проведен расчет эффективности дифракции для модулятора брэгговского типа. Показано, что при большой частоте модуляции из-за нарушения симметрии акустооптической связи эффективность дифракции может достигать 94% даже для сфокусированного светового пучка.

Введение

Принцип действия акустооптических (AO) модуляторов света основан на том, что с помощью акустических волн можно управлять различными параметрами световой волны, такими как амплитуда, фаза, частота и поляризация [1]. В зависимости от того, каким параметром световой волны надо управлять, возможны различные виды AO-модуляторов: амплитудные, фазовые и т. д. Из всего многообразия модуляторов в настоящее время исследованы и находят применение лишь некоторые виды. К наиболее важным относится широкополосный амплитудный модулятор, в котором используется бегущая ультразвуковая волна. Работа такого модулятора основана на зависимости интенсивности дифрагированного света от амплитуды акустической волны.

Строгий расчет модулятора сводится фактически к решению задачи о дифракции светового пучка на амплитудно-модулированной акустической волне. Эта задача сама по себе не является новой, она рассматривалась многими авторами [2–7], однако ранее расчеты выполнялись в приближении слабого АО-взаимодействия, когда эффективность дифракции не превышает 10%. В данной работе рассматривается модуляция света в режиме сильного взаимодействия. Для модулятора брэгговского типа исследована зависимость эффективности дифракции от параметров модулирующей ячейки и управляющего сигнала, проанализированы возникающие при модуляции нелинейные искажения.

1. Основные соотношения

При малой эффективности дифракции АО-взаимодействие является линейным. Поэтому, решая задачу АО-модуляции света, можно воспользоваться принципом суперпозиции. При этом световой и акустический пучки разлагаются в спектр по плоским монохроматическим волнам, учитывается взаимодействие каждой спектральной составляющей, а все парциальные дифрагированные волны на выходе АО-ячейки суммируются [1, 6, 8]. Более интересен с прикладной точки зрения режим сильного АО-взаимодействия, но его анализ представляет большие трудности, поскольку в этом режиме дифракционная задача становится нелинейной по звуку. Причина заключается в том, что в сильном акустическом поле фотоны светового пучка могут испытать многократное рассеяние на фононах прежде, чем выйдут из АО-ячейки. Вследствие этого дифракционный спектр существенно обогащается. Даже при брэгговской дифракции нулевой и первый порядки могут содержать много дифракционных максимумов, количество которых растет с увеличением акустической мощности. Все максимумы черпают энергию из одного и того же падающего светового пучка, поэтому возникает эффект конкуренции дифрагированных мод, из-за которого интенсивность света в каждом отдельном максимуме зависит от интенсивности в других.

Учитывая, что по свету дифракционная задача всегда является линейной, рассмотрим сначала дифракцию плоской световой волны. Предположим, что в изотропной среде, ограниченной плоскостями x = 0 и x = l, распространяется по оси z амплитудно-модулированная акустическая волна

$$egin{aligned} a(z,t) &= a_0 [1+m\cos(\Omega_m t-K_m z)] imes \ & imes \exp[j(\Omega_0 t-K_0 z)], \end{aligned}$$

где a_0 — амплитуда, m — глубина модуляции, $\Omega_m = 2\pi f_m$ — частота модуляции, $\Omega_0 = 2\pi f_0$ — частота несущей, $K_m = \Omega_m/v$ и $K_0 = \Omega_0/v$ — волновые числа, v — скорость звука. Спектр акустического поля содержит три составляющие: центральную с амплитудой a_0 и частотой Ω_0 и две боковые с амплитудами $a_0m/2$ и частотами $\Omega_0 \pm \Omega_m$. Проходя через акустическое поле, свет дифрагирует на всех трех составляющих. При этом на первом этапе рассеяния рождаются дифрагированные волны первого порядка с частотами $\omega + \Omega_0$ и $\omega + \Omega_0 \pm \Omega_m$, где ω частота падающего света. На втором этапе брэгговского рассеяния рождаются волны нулевого порядка с частотами $\omega \pm 2\Omega_m$, $\omega \pm \Omega_m$ и ω . Третий этап рассеяния добавит в спектре первого порядка частоты $\omega + \Omega_0 \pm 3\Omega_m$ и т.д. Нетрудно видеть, что при таком характере рассеяния на выходе из АО-ячейки сформируется оптический спектр, состоящий из эквидистантно расположенных частот: $\omega \pm i\Omega_m$ — в нулевом и $\omega + \Omega_0 \pm i\Omega_m$ — в первом порядке, где і — целые числа. Можно утверждать, что независимо от того, на каком этапе рассеяния образуется тот или иной дифракционный уровень, он будет связан только с тремя другими уровнями. Например, на уровень первого порядка (1, i) свет будет рассеиваться только с уровней нулевого порядка (0, i), (0, i+1) и (0, i-1), а на уровень нулевого порядка (0, i) - cуровней (1, i), (1, i+1) и (1, i-1). Следовательно, система уравнений, описывающих брэгговскую дифракцию света на амплитудно-модулированном звуке (1), будет иметь вид

$$\begin{cases} 2\frac{dC_{0i}}{dx} = q \Big[C_{1i} \exp(j\eta_{ii}x) + \\ + \frac{m}{2} C_{1,i+1} \exp(j\eta_{i,i+1}x) + \\ + \frac{m}{2} C_{1,i-1} \exp(j\eta_{i,i-1}x) \Big], \qquad (2) \end{cases}$$

$$egin{aligned} &2rac{dC_{1i}}{dx}\!=\!-q\Big[C_{0i}\exp(-j\eta_{ii}x)+\ &+rac{m}{2}C_{0,i-1}\exp(-j\eta_{i-1,i}x)+\ &+rac{m}{2}C_{0,i+1}\exp(-j\eta_{i+1,i}x)\Big], \end{aligned}$$

где C_{0i} и C_{1i} — относительные амплитуды спектральных компонент нулевого и первого порядков, q — коэффициент связи, пропорциональный амплитуде акустической волны a_0 [1]. Параметры η_{ik} определяют расстройку *i*-го уровня нулевого порядка и k-го уровня первого порядка. В случае изотропной дифракции для расстроек можно получить следующее выражение:

$$\eta_{ik} = rac{2\pi f_0}{v} [1+(k-i)F] \left\{ heta + rac{\lambda f_0}{2nv} [1+(k+i)F]
ight\},$$

где θ — угол падения световой волны на АО-ячейку, λ — длина волны света, n — показатель преломления, $F = f_m/f_0$ — нормированная частота модуляции. Уравнения (2)–(3) решаются с естественными граничными условиями: $C_{0i}(x = 0) = \delta_{0i}$, $C_{1i}(x = 0) = 0$. Количество уравнений, которое должно быть учтено при расчете, зависит от значений параметра Рамана–Ната V = ql и волнового параметра $Q = \lambda l f_0^2/nv^2$ [1].

Быстродействие АО-модулятора определяется временем, за которое ультразвуковая волна пересечет световой пучок [1]. Следовательно, для получения высокого быстродействия необходимо предельно уменьшить размеры области АО-взаимодействия, т. е. использовать сильно сфокусированный световой пучок. При этом для обеспечения наибольшей полосы модуляции перетяжка пучка должна находиться в центре области взаимодействия, в плоскости x = l/2. Будем считать для определенности, что на АО-ячейку под углом θ_0 падает гауссов пучок. Тогда спектр света на входе в ячейку будет иметь вид

$$egin{aligned} U(heta) &= rac{\sqrt{\pi}}{2} u_0 d \exp\left[-rac{\pi^2 d^2 n^2}{4 \lambda^2} (heta - heta_0)^2
ight] imes \ & imes \exp\left[-j rac{\pi n l}{2 \lambda} heta^2
ight], \end{aligned}$$

где u_0 — амплитуда, d — диаметр пучка в перетяжке. При дифракции ограниченного светового пучка дифракционные уровни уширяются. Если ширина пучка d меньше пространственного периода модуляции $\Lambda_m = 2\pi/K_m$, то дифракционные максимумы в каждом порядке перекрываются. Вследствие этого возникают биения на разностных частотах $i\Omega_m$, что и приводит к модуляции интенсивности дифрагированного излучения.

Определим интегральную эффективность дифракции ξ как отношение мощности дифрагированного излучения первого порядка к мощности падающего света. Тогда можно записать:

$$\xi(t) = \frac{\int_{-\infty}^{\infty} \left| \sum_{i} U(\theta^{(i)}) C_{1i}(\theta^{(i)}) \exp[j\Omega_0 t(1+iF)] \right|^2 d\theta_d}{\int_{-\infty}^{\infty} |U(\theta)|^2 d\theta},$$
(5)

где θ_d — углы на выходе АО-ячейки. Комплексные амплитуды $C_{1i}(\theta)$ определяются из решения системы (2)–(3) при x = l. В выражении (5) надо дополнительно учесть сдвиг пространственного спектра света в процессе дифракции:

$$heta^{(i)} = heta_d - rac{\lambda}{\Lambda_0 n} (1 + iF), aga{6}$$

где $\Lambda_0 = v/f_0$ — длина волны ультразвука. Подставив (4) и (6) в (5), получим

$$\xi(t) = rac{D}{2} \sqrt{rac{\pi}{2}} imes$$
 $imes \int_{-\infty}^{\infty} \left| \sum_{i} \exp\left[-rac{\pi^2 D^2}{16} (\Theta_d - \Theta_0 - 2 - 2iF)^2
ight] imes$
 $imes \exp\left[-jrac{\pi Q}{8} (\Theta_d - 2 - 2iF)^2
ight] imes$
 $imes C_{1i}(\Theta^{(i)}) \exp[j\Omega_0 t(1+iF)]
ight|^2 d\Theta_d.$
(7)

Здесь для удобства численного расчета введены безразмерные параметры:

$$D = rac{d}{\Lambda_0}; \quad \Theta_0 = rac{ heta_0}{\left| heta_B^{(\mathrm{is})}
ight|}; \quad \Theta_d = rac{ heta_d}{\left| heta_B^{(\mathrm{is})}
ight|},$$

где $\theta_B^{(is)} = -\lambda/2n\Lambda_0$ — угол Брэгга при изотропной дифракции. Выражение (7) позволяет детально проанализировать работу АО-модулятора.

2. Результаты расчета

Брэгговский режим дифракции обычно определяется условием Q > 2, поскольку при выполнении этого условия в первый порядок может быть рассеяно более 95% падающего света [1]. Представленные ниже результаты получены при Q = 8, поэтому пренебрежение в расчете высокими порядками (2-м, 3-м и т.д.) является вполне обоснованным. Рассмотрен наиболее интересный вариант, когда угол падения θ_0 равен углу Брэгга на частоте $F_0: \theta_0 = -\lambda f_0/2nv$, $\Theta_0 = -1$. При расчете дифракционного спектра использовалось до 17 уравнений системы (2)–(3), что обеспечило высокую точность расчета (ошибка не более 1%).

Рис. 1. Зависимость интегральной эффективности дифракции от параметра Рамана–Ната при отсутствии модуляции: D = 2 (1), 4 (2), 6 (3), 10 (4) и 30 (5)

На рис. 1 представлена зависимость интегральной эффективности дифракции ξ от параметра Рамана–Ната V при отсутствии модуляции (m = 0). В отличие от брэгговского рассеяния плоской световой волны [1] здесь эффективность дифракции уже не достигает единицы, причем чем сильнее фокусирован световой пучок, тем меньше максимальное значение ξ_m . Причиной этого является нарушение условия фазового синхронизма при АО-взаимодействии. В расходящемся световом пучке присутствуют плосковолновые компоненты с различными направлениями волновой нормали в пределах угла расходимости φ_L , тогда как условие фазового синхронизма может быть выполнено только для одной из них. Для остальных будет существовать расстройка η , уменьшающая эффективность рассеяния света.

Чем больше φ_L , тем сильнее проявляется этот эффект. При этом важны не столько абсолютные значения φ_L , сколько соотношение расходимостей светового (φ_L) и акустического (φ_S) пучков, т. е. значение параметра Гордона $G = \varphi_L/\varphi_S$ [1]. В данном случае $G = 4Q/\pi D$. Плосковолновое приближение получается при $G \to 0$. А при G > 1 эффективность дифракции падает по закону $\xi \sim G^{-1}$.

Кривые рис. 1 можно рассматривать как модуляционные характеристики АО-модулятора, рассчитанные для заданной ширины светового пучка D. Положение рабочей точки на характеристике определяется значением параметра V. Из рис. 1 ясно, что наименьших искажений при аналоговой модуляции света следует ожидать, когда $V \approx \pi/2$. Этот случай иллюстрирует рис. 2, на котором представлены временные отклики модулятора на гармоническое воздействие при разной глубине модуляции амплитуды акустической волны. Расчет выполнен для сильно сфокусированного светового пучка (D = 2) и двух значений частоты модуляции: низкой (F = 1/1000, штриховые кривые a) и высокой (F = 1/15, сплошные кривые b). Прямыми 1 и 2 отмечены уровни эффективности дифракции, соответствующие значениям $V = \pi$ и $V = \pi/2$ на модуляционной характеристике.

Случай F = 1/1000 можно рассматривать как квазистатический режим работы модулятора, поскольку при этом пространственный период модуляции Λ_m в 500 раз превосходит ширину светового пучка. Относящиеся к данному случаю кривые *а* имеют вполне объяснимый вид. При малой глубине модуляции интенсивность дифрагированного света меняется по гармоническому закону (кривая *За*).

Рис. 2. Зависимость интегральной эффективности дифракции от времени для F = 1/1000 (a) и 1/15 (b): $m = 0, V = \pi$ (I); $m = 0, V = \pi/2$ (2); m = 0, 1, $V = \pi/2$ (3); $m = 0, 5, V = \pi/2$ (4) и m = 1, $V = \pi/2$ (5)

С увеличением *m* появляются искажения, обусловленные нелинейностью модуляционной характеристики (кривая 4*a*), а при m = 1 форма модуляции света приближается к меандру (кривая 5*a*). Однако при любых значениях *V* и *m* эффективность дифракции не превышает максимального значения ξ_m на модуляционной характеристике (т. е. уровня прямой 1).

Иначе обстоит дело в случае высокой частоты модуляции. Малая глубина модуляции дает тот же эффект, что и квазистатика (кривая 3b). Но при больших *m* зависимость $\xi(t)$ имеет существенно другой вид (кривая 5b). Главная особенность заключается в том, что на части периода модуляции эффективность дифракции может значительно превосходить ξ_m . Это особенно хорошо видно на рис. 3, где для фиксированного значения m = 1 показано, как меняется $\xi(t)$ при изменении положения рабочей точки. Если рабочая точка выбрана в максимуме модуляционной характеристики, то, как и следовало ожидать, в квазистатическом случае форма модуляции света далека от синусоидальной — в спектре выходного сигнала присутствуют сильные гармоники (кривая 4а). В случае высокой частоты модуляции искажений меньше, но, главное, пиковое значение эффективности дифракции ξ_{max} достигает 0,6, что в 2,3 раза превосходит ξ_m (кривая 4b). Можно отметить также, что это значение достигается раньше того момента времени $f_m t = 1$, когда в сечении светового пучка мощность ультразвука становится максимальной. Подобный эффект был экспериментально обнаружен авторами работы [9] при импульсной модуляции света в режиме сильного АО-взаимодействия. Причиной его является нарушение симметрии АО-связи между волнами первого и нулевого порядков в нестационарном

Рис. 3. Временной отклик модулятора при F = 1/1000~(a) и 1/15~(b,~c): $V = \pi,~m = 0~(I)$; $V = 0, 2\pi,~m = 1~(2)$; $V = 0, 7\pi,~m = 1~(3)$; $V = \pi,~m = 1~(4)$

Рис. 4. Зависимость ξ_{\max} (1-4) и M (5) от нормированной частоты модуляции: $V = \pi/2$, m = 0, 2 (1); $V = \pi/2$, m = 1 (2); $V = 0, 7\pi$, m = 1 (3); $V = \pi$, m = 1 (4)

акустическом поле. Если рассеяние света происходит в +1-й порядок, то при увеличении мощности ультразвука свет дифрагирует в область с меньшей плотностью акустической мощности. Обратная перекачка света в нулевой порядок здесь затруднена. Вследствие этого интенсивность дифрагированного света нарастает быстрее и на некоторое время может существенно превысить стационарное значение. Если же рассеяние света происходит в -1-й порядок, то аналогичный эффект должен наблюдаться на той части периода модуляции, когда происходит уменьшение мощности ультразвука. Кривая 4*c*, относящаяся к -1-му порядку, подтверждает этот вывод. Видно, что она является зеркальным отражением кривой 4*b*.

На рис. 4 кривыми 1-4 представлена зависимость $\xi_{\max}(F)$ для различных значений m и V. При малой глубине модуляции (кривая 1) частотная характеристика равномерна во всем диапазоне работы модулятора до частот, на которых пространственный период модуляции Λ_m становится сравнимым с шириной светового пучка d. Спад на характеристике обусловлен усреднением модуляции по апертуре пучка. При $d = \Lambda_m$ величина ξ_{\max} снижается до стационарного значения ξ_m , а глубина модуляции света M (кривая 5) падает до нуля. Увеличение m приводит к неравномерности частотной характеристики в области высоких частот и подчеркиванию высокочастотных составляющих оптического спектра (кривые 2-4).

Заключение

Проведенный в работе расчет дифракции света на амплитудно-модулированной акустической волне показал, что в режиме сильного АО-взаимодействия частотная характеристика модулятора становится неравномерной. На высоких частотах вблизи границы полосы модуляции эффективность дифракции возрастает и может в несколько раз превысить стационарный уровень. Чем выше быстродействие модулятора, тем сильнее проявляется этот эффект. Такая особенность частотной характеристики обусловлена нарушением симметрии АО-связи между нулевым и первым порядками дифракции в нестационарном акустическом поле.

Литература

- 1. Балакиши В.И., Парыгин В.Н., Чирков Л.Е. Физические основы акустооптики. М., 1985.
- 2. Gordon E.I. // Appl. Opt. 1966. 5, No. 10. P. 1629.
- 3. Maydan D. // IEEE J. Quant. Electron. 1970. QE-6, No. 1. P. 15.

ГЕОФИЗИКА

УДК 551.511.32:536.758

- 4. Johnson R.V. // Appl. Opt. 1977. 16, No. 2. P. 507.
- 5. Балакший В.И., Парыгин В.Н. // Радиотехн. и электроника. 1980. 25, № 9. С. 1957.
- Балакиший В.И. // Вестн. Моск. ун-та. Физ. Астрон. 1982.
 № 1. С. 43 (Moscow University Phys. Bull. 1982. No. 1. Р. 46).
- 7. Балакиший В.И. // Изв. АН СССР, сер. физ. 1981. **45**, № 3. С. 636.
- Балакиший В.И. // Радиотехн. и электроника. 1984. 29, № 8. С. 1610.
- 9. Магдич Л.Н., Молчанов В.Я. // ЖТФ. 1977. 47, № 5. С. 1068.

Поступила в редакцию 19.12.97

МОДЕЛИРОВАНИЕ КЛИМАТИЧЕСКИХ ПРОЦЕССОВ НА ОСНОВЕ ВЕРОЯТНОСТНОГО ПОДХОДА

В. П. Юшков

(кафедра физики атмосферы)

Для описания климатического состояния предлагается ввести в систему уравнений, описывающих климатическую изменчивость, понятие вероятности. Проведен критический анализ используемых методов климатического моделирования и показана необходимость перехода от динамического к динамико-статистическому описанию. Для определения сохраняющихся характеристик движения введена бесконечная цепочка масштабов. Формулируется тезис о том, что для выделения из всех возможных движений внутри системы тех, для которых выполняются законы сохранения, необходимо определить характеристики возможных распределений вероятности в форме операторов.

Введение

Исследования глобального климата Земли опираются на представление о весьма широком спектре изменчивости как в пространстве, так и во времени практически всех геофизических процессов: атмосферных, океанических, литосферных, криосферных, космических. Сложность численного моделирования сразу многих процессов разных масштабов и весьма неудовлетворительные результаты таких попыток подводят к мысли о бесперспективности чисто детерминированного подхода к исследованию климата. Если полагать цепочку временных и пространственных масштабов взаимодействующих процессов бесконечной, то нужно заранее отказаться от стремления включить все геофизические процессы в описание климата. Более пристальное внимание следует уделить взаимосвязи процессов соседних масштабов. Обычно, когда говорят о цепочке масштабов, подразумевают (может быть, неявно), что описание ведется на таком масштабе, для которого меньший масштаб является бесконечно малым или больший — бесконечно большим. В то же время постепенное изменение временного или пространственного масштаба исследуемых процессов приводит к необходимости пересмотра предельных условий, заложенных в выбранное описание в тех случаях, когда эти условия перестают выполняться.

Хорошо известное определение климата как статистического ансамбля состояний [1] выдвигает на передний план вероятностный подход к анализу климатических процессов, тогда как наиболее сложные модели климата — модели общей циркуляции атмосферы и океана — являются, по существу, динамическими. По замыслу автора, объединить эти два подхода можно. Для этого надо снова рассмотреть основные, казалось бы очевидные, положения климатического моделирования и проанализировать недостатки используемых в настоящее время подходов.

В предыдущей работе [2] был предложен путь в рамках возврата к кинетическим уравнениям, в настоящей статье продолжен поиск подходящего статистического описания климатической системы.

Постановка проблемы

Климатическая система — яркий и очень важный пример существенно неравновесной и структурированной среды. Нерегулярная изменчивость этой системы является ее неотъемлемым свойством, а не следствием неполного учета динамических процессов.

То, что гидродинамический подход к описанию климатического состояния неприемлем, интуитивно понятно многим. Серьезная критика динамических