
Moscow Uni11ersity 
Physics Bulletin 
Vol. 54, No. 1, pp. 50-56, 1999 

OPTICS AND SPECTROSCOPY 

Vestnik Moskovskogo 
Uni11ersiteta. Fizika 

unc sas.241.1s 

ACOUSTOOPTIC LIGHT MODULATION IN AN ISOTROPIC MEDIUM 
IN THE CASE OF STRONG ACOUSTOOPTIC INTERACTION 

V. I. Balakshy and I. A. N agaeva 

The results are presented of theoretical studies into the diffraction of light 
by an amplitude-modulated acoustic wave in conditions of strong acoustooptic 
interaction. The diffraction efficiency is calculated for a Bragg-type modulator. 
It is demonstrated that where the modulation frequency is high enough, the 
symmetry of the acoustooptic coupling is disturbed so that the diffraction 
efficiency may be as high as 943 even for a focused light beam. 

INTRODUCTION 

The operation of acoustooptic modulators is based on the fact that acoustic waves can help to control 
various light wave parameters, such as amplitude, phase, frequency, and polarization [1]. According to which 
light wave parameter is to be controlled, various types of acoustooptic modulators are possible: amplitude, 
phase, etc. It is but some types out of the great variety of such modulators that have been studied to date 
and are finding application. The most important ones include a wide-band amplitude modulator that uses 
a traveling ultrasonic wave. Such a modulator depends for its operation on the relationship between the 
intensity of the diffracted light and the amplitude of the acoustic wave. 

The rigorous calculation of the modulator reduces actually to the solution of the problem of diffraction 
of a light beam by an amplitude-modulated acoustic wave. This problem is in itself not a new one: it was 
considered by many authors [2-7], but all calculations were previously performed in the weak acoustooptic 
interaction approximation, where the diffraction efficiency was no more than 10%. In this work, we consider 
light modulation under strong acoustooptic interaction conditions. We have studied the relationship between 
the diffraction efficiency and the modulator cell parameters for a Bragg-type modulator and analyzed 
nonlinear distortions developing in the course of modulation. 

1. BASIC RELATIONSHIPS 

When the diffraction efficiency is low, the acoustooptic interaction is linear. Therefore, in solving 
the problem of acoustooptic modulation, use can be made of the syperposition principle. The light and 
acoustic beams are in that case expanded into a spectrum in plane monochromatic waves, the interactions 
of all spectral components are taken into consideration, and all partial diffracted waves at the exit from the 
acoustooptic cell are summed up (1, 6, 8]. The strong acoustooptic interaction regime is more interesting 
from the applied standpoint, but its analysis is very difficult to perform because in this case the diffraction 
problem becomes nonlinear in sound. The reason is that light beam photons in a strong acoustic field 
may experience repeated scattering by phonons before they leave the acoustooptic cell. As a result, the 
diffraction spectrum becomes substantially enriched. Even in the case of Bragg's diffraction, the zeroth and 
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first orders may contain many diffraction maxima, whose number increases as the acoustic power increases. 
All the maxima draw power from one and the same incident light beain, and therefore, there takes place 
the competition between the diffracted modes, as a result of which the intensity of light in each particular 
maximum depends on that in the other maxima. 

Bearing in mind that the diffraction problem is always linear in light, we will first consider the 
diffraction of a plane light wave. Assume that in an isotropic medium bounded by the planes x = 0 
and x = l the amplitude-modulated acoustic wave propagates along the z-axis 

a(z, t) = ao[l + mcos(Omt - Kmz)] exp[j(f!ot - Koz)], (1) 

where ao is the amplitude, mis the depth of modulation, Om = 271" Jm is the modulation frequency, f!o = 27rJo 
is the carrier frequency, Km = flm/v and Ko = flo/v are the wave numbers, and v is the sound velocity. 
The acoustic field spectrum contains three components: the central component with the amplitude ao and 
frequency 0 0 and two side components with the amplitudes a0 m/2 and frequencies 0 0 ±Om. While passing 
through the acoustic field, light is diffracted by all the three components. In this case, at the first stage of 
scattering, there originate first-order diffracted waves with the frequencies w + 0 0 and w + f!o ±Om, where 
w is the frequency of incident light. At the second Bragg's scattering stage, there develop zero-order waves 
with frequencies w ± 2flm, w ±Om, and w. The third scattering stage will add the frequencies w + f!o ± 3flm 
to the first-order spectrum and so on. It is easy to see that with the character of scattering being what it is, 
an optical spectrum consisting of the equidistant frequencies w ± i!lm in the zeroth order and w +!lo± iOm 
in first order, where i are integers, will form at the exit from the acoustooptic cell. It can be stated that 
any diffraction level will only be coupled to three other levels without regard to a particular scattering 
stage at which it is formed. For example, light will be diffracted to the first-order level (1, i} from the 
zero-order levels (0, i), (0, i + 1), and (0, i - 1} only, and to the zero-order level (0, i}, from th.e levels (1, i}, 
(1, i + 1), and (1, i - 1). Consequently, the system of equations describing the Bragg diffraction of light by 
amplitude-modulated sound (1) will have the form 

!
2d~:' = q[C"exp(j11;;x) + ;c1,•+1exp(j11;,;+ix) + ;c,,,_,exp(j11;,;-1x}], 

~ . m . m . 2dx = -q[Co;exp(-JT/iix) + z-Co,i-1exp(-JT/i-l,ix) + z-Co,;+iexp(-JT/i+l,ix}j, 

(2) 

(3) 

where Cai and C1i are the relative amplitudes of the zero- and first-order spectral components, and q is the 
coupling coefficient proportional to the amplitude a0 of the acoustic wave [1]. The parameters T/ik define 
the detuning of the ith zero-order level and kth first-order level. In the case of isotropic diffraction, one can 
obtain the following expression for the detuning parameters 

271" Jo . { >..Jo . } 
T/ik = -v-[1 + (k - i)F] 0 + 

2
nv [1 + (k + i}F] , 

where 0 is the angle of incidence of the light wave on the acoustooptic cell, ).. is the wavelength of light, 
n is the refractive index, and F = Jm/ Jo is the normalized modulation frequency. Equations (2) and (3) 
are solved subject to the natural boundary conditions C0 ;(x = 0) = 80,, Cli(x = 0) = 0. The number of 
equations that must be taken into consideration in calculations depends on the values of the Raman-Nath 
parameter V = ql and the wave parameter Q = )..lfJ/nv2 [1]. 

The quick-acting response of the acoustooptic modulator is governed by the time it takes for the 
ultrasonic wave to cross the light beam [1]. Consequently, to obtain a fast-acting modulator, it is necessary 
to reduce as much as possible the size of the acoustooptic interaction region, i.e., to use a highly focused 
light beam. And to provide for the maximum modulation band, the beam waist must lie at the center of 
the interaction region in the plane x = l/2. 

For definiteness, we shall assume that a Gaussian light beam is incident on the acoustooptic cell at an 
angle Oo. In that case, the light spectrum at the entrance to the cell will have the form 

,ft [ .,,.2d2n
2 

2] [ . 7rnl 2] U(O) = 2 u0 dexp -~(8 - Oo) exp -J 
2

).. 8 , (4) 
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where u0 is the amplitude and d is the beam waist diameter. Where subject to diffraction is a restricted 
light beam, the diffraction levels broaden. If the beam width d is smaller than the spatial modulation period 
Am = 271" /Km, then the diffraction maxima in every order overlap. As a result, there develops a beating at 
the difference frequencies iflm, and it is exactly this beating that leads to the intensity modulation of the 
diffracted radiation. 

Let us define the integral diffraction efficiency e as the ratio between the power of the first-order 
diffracted radiation and that of the incident light. Then we write 

"' J IL U(li('l)Ci;(li('l) exp[j!10t(l + iF)Jl
2 

dlid 
i e(t) = -_oo ______ "' ________ _ 

J IU(li)l 2dli 

(5) 

where lid are the angles at the exit from the acoustooptic cell. The complex amplitudes Ci;(li) are found by 
solving system of equations (1)-(3) at x = l. In expression (5), account should additionally be taken of the 
shift of the spatial light spectrum in the course of diffraction 

li(il =lid - ~(1 + iF), 
Aon 

where Ao= v/ fo is the length of the ultrasonic wave. Substituting (4) and (6) into (5), we get 

D fi !"'I [ 1T

2

D
2 

] e(t)=2v2 L:exp -16(0d-0o-2-2iF)2 

-oo • 

x exp [-j 71"~ (0d - 2 - 2iF) 2 l Ci;(0(')) exp[j!10t(l + iF)]J
2 

d0J. 

Here the following dimensionless parameters are introduced to facilitate numerical computations 

d 
D=-, 

Ao 
lio 

0o = Iii~·) I' 
Ii, 

0. = lli~')I' 

(6) 

(7) 

where Ii~') = ->./2nA0 is the Bragg angle in the case of isotropic diffraction. Expression (7) enables one to 
analyze in detail the operation of the acoustooptic modulator. 

2. COMPUTATION RESULTS 

The Bragg diffraction regime is usually defined by the condition Q > 2, for if this condition is satisfied, 
· more than 95% of the incident light can be scattered to the first order levels [1]. The results presented 

below were obtained at Q = 8, and so the neglect in calculations of higher orders (2nd, 3rd, etc.) is quite 
justifiable. The most interesting case has been considered, where the angle of incidence 60 is equal to the 
Bragg angle at the frequency F0 : 110 = ->.f0 /2nv, 0 0 = -1. In calculating the diffraction spectrum, use 
was made of up to 17 equations of system (2)-(3), which provided for a high calculation accuracy (error is 
no more than 1%). 

Figure 1 presents the integral diffraction efficiency e as a function of the Raman-Nath parameter V 
in the absence of modulation (m = 0). As distinct from the Bragg scattering of a plane light wave [1], the 
diffraction efficiency here is no longer equal to unity, and the higher the focusing of the light beam, the 
lower is the maximum value of ~m· The reason is the violation of the phase-match condition in acoustooptic 
interaction. In a divergent light beam, there exist plane-wave components that differ in the direction of 
the wave normal within the limits of the divergence angle 'PL, and the phase-match condition can only be 
fulfilled for one of them. For the rest of the components, there will exist a divergence 71, which reduces the 
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Fig. 1 

Integral diffraction efficiency as a function of the Raman-Nath parameter in the absence of 
modulation: 1 - D = 2; 2 - D = 4; 3 - D = 6; 4 - D = 10; 5 - D = 30. 

scattering efficiency. The greater the angle <p L, the stronger this effect manifests itself. Important in this 
case is the ratio between the divergence angles of the light beam ( <p L) and the acoustic ( <p s) beam, i.e., the 
Gordon parameter G = 'PL/'Ps rather than the absolute values of the angle 'PL [1]. Here G = 4Q/1rD. The 
plane-wave approximation occurs, when G-+ O. And at G > 1 the diffraction efficiency drops as l ~ c- 1 • 

The curves of Fig. 1 can be treated as the modulation characteristics of the acoustooptic modulator 
calculated for the given light beam width D. The position of the operating point in the characteristic curve 
is determined by the parameter V. It is clear from Fig. 1 that the least distortion in analog light modulation 
should be expected, when V ~ 1r /2. This case is illustrated by Fig. 2 that presents time responses of the 
modulator to a harmonic stimulus at various depths of the acoustic wave modulation amplitude. The 
computations were made for a highly focused light beam (D = 2) and two modulation frequencies - a low 
frequency (F = 1/1000, dashed curves a) and a high frequency (F = 1/15, solid curves b). Lines 1 and 2 
indicate the diffraction efficiency levels corresponding to V = 1T and V = 1r /2. 

The case F = 1/1000 can be regarded as a quasistatic operating regime of the modulator, for the 
spatial modulation period Am is in this case 500 times the width of the light beam. The shape of the 
curves a relating to the given case is quite explicable. At a small depth of modulation the intensity of the 
diffracted light varies harmonically (curve 3a). As mis increased, there occur the distortions caused by the 
nonlinearity of the modulation characteristic (curve 4a), and at m = 1 the shape of light modulation curve 
approaches a meander (curve 5a). However, no matter what the values of V and m, the diffraction efficiency 
does not exceed the maximum value of lm in the modulation characteristic (i.e., the level of line !). 

A different situation obtains in the case of high modulation frequency. Low modulation depth values 
have the same effect as in the case of a quasistatic regime (curve 3b). But at high m values, the function l(t) 
has a substantially different form (curve 5b). The main specific feature is that the diffraction efficiency in a 
portion of the modulation period can substantially exceed ~m. It especially manifests itself in Fig. 3, which 
illustrates how i;(t) varies as the function of the operating point position at m = 1. If the operating point 
is chosen to lie in the maximum of the modulation characteristic, then, as might be expected, the shape of 
the light modulation curve in the quasistatic case is far from sinusoidal: strong harmonics are present in 
the output signal spectrum (curve 4a). In the case of high modulation frequency, distortions are less, but 
the main peak diffraction efficiency lmax reaches 0.6, which is 2.3 times the value of lm (curve 4b). One 
may also note that this value is reached before the instant fmt = 1, at which the acoustic beam power in 
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Fig. 2 

Integral diffraction efficiency as a function of time for (a) F = 1/1000 and (b) F = 1/15: 
1 - m = 0, V = 7r; 2 - m = 0, V = "/2; 3 - m = 0.1, V = "/2; 4 - m = 0.5, V = "/2; 
5 - m = 1, V = 7r/2. 

the cross section of the light beam reaches its maximum. A similar effect was discovered by the authors 
of [9] to occur in the course of pulsed light modulation under strong acoustooptic interaction conditions. 
The reason is the disturbance of the acoustooptic coupling symmetry between the first- and the zero-order 
wave in the nonstationary acoustic field. If light is scattered into the +1st order, then as the ultrasound 
power is raised) light is diffracted into a region with a lower acoustic power density. The reverse pumping of 
light to the zeroth order is impeded here. As a result, the diffracted light intensity rises faster and for some 
time may materially exceed the stationary value. But if light is scattered into the -1st order, then a similar 
effect must be observed in that portion of the modulation period, where the ultrasound power decrea.ses. 
Curve 4c relating to the -1st order supports this conclusion. It is seen that this curve is the mirror image 
of curve 4b. 

Curves 1 through 4 in Fig. 4 present the function emax ( F) for various values of V and m. At a small 
modulation depth (curve 1) the frequency characteristic is uniform throughout the operating range of the 
modulator up to frequencies, at which the spatial modulation period Am becomes comparable with the 
light beam width d. The dip of the characteristic curve is due to the averaging of modulation over the 
beam aperture. At d ~ Am, the quantity emax decreases down to the stationary value em, and the light 
modulation depth M (curve 5) drops to zero. Increasing m makes the frequency characteristic nonuniform 
in the high-frequency region and enhances the high-frequency components of the optical spectrum (curves 
2 through 4). 

CONCLUSION 

The calculation of light diffraction by an amplitude-modulated acoustic wave has shown that 
under strong acoustooptic interaction conditions the frequency characteristic of the modulator becomes 
nonuniform. At high frequencies near the modulation band edge the diffraction efficiency rises and may 
exceed several times the stationary level. The higher the quick responce of the modulator, the stronger 
it manifests itself. This feature of frequency characteristic is due to the disturbance of symmetry of the 
acoustooptic coupling between the zeroth and the first diffraction order in the nonstationary acoustic field. 
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Fig. 3 

Time response of the modulator at (a) F = 1/1000 and (b) and (c) F = 1/15: 1 - V = ,,., 
m = O; 2 - V = 0.27T, m = 1; 3 - V = 0.7,,., m = 1; 4 - V = ,,., m = 1. 
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Fig. 4 

~max (curves 1 through 4) and M (curve 5) as a function of the normalized modulation 
frequency: 1 -V = 7r/2, m = 0.2, 2 - V = 7r/2, m = 1, 3 - V = 0.7,,., m = 1, 
4-V=,,., m= 1. 
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