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ON THE EXISTENCE OF KUIPER BELT OBJECTS BOUND WITH 
NEPTUNE BY ORBITAL RESONANCES 

I. A. Gerasimov and B. R. Mushailov 

Based on a restricted elliptic three-body problem with due account of secular 
perturbations caused by Uranus, Saturn, and Jupiter, we have evaluated the 
orbits and regions of stable existence for Transneptune objects that are in orbital 
commensurability with Neptune. 

INTRODUCTION 

The existence of the Transneptune belt was predicted by C. Edgevers (1949) and J. Kuiper (1951). 
The Kuiper belt lies at a distance of about 40-60 a.u. from the Sun [1, 2]. The total mass of bodies 
in this belt is comparable with that of the Earth. The first object (1992 QB!) was discovered in 1992 
at a distance of 42 a.u. from the Sun. A few more Transneptune objects with major orbital semiaxes 
32.3 $ a $ 43.8 a.u., excentricities e $ 0.07, and orbit inclinations i $ 8 deg were found in 1993. Their 
diameters range from 100 to 280 km. In 1997, there were already over 30 known Kuiper belt objects with 
major orbital semiaxes from 35 to 48 a.u. The orbit excentricities of these bodies turned out to be low, and 
their diameters were 100-300 km. According to some estimates 1 the largest Kuiper belt objects may be up 
to 1000 km in diameter [3, 4]. 

Under certain assumptions it can be assumed that, owing to gravity influence of the largest bodies 
in the Transneptune belt and the gravity influence of giant planets, individual Kuiper belt bodies could 
migrate over the time of the Solar system existence from the central and outer parts of this belt into its 
inner part. And the majority of bodies with excentricities e 2: 0.1 could migrate from the inner part of the 
Transneptune belt towards Neptune's orbit and further towards the Sun. Specific estimates of the mass of a 
substance migrating from the Transneptune belt depend on the distribution of bodies in the belt by masses 
and orbit elements, which is currently unknown [5, 6]. 

Transneptune objects may exist for a sufficiently long time if their orbit elements correspond to regions 
of stable motion (orbital stability regions). The existence of such "stability zones" crucially depends on the 
existence of orbital resonances with giant planets, first of all with Neptune. 

Libration stable objects may remain in the Kuiper belt [7, 8]. Their stability is due to the absence of 
"convergences", i.e., the existence of a nonzero lower bound for the distance between the perturbing body 
(Neptune) and the "libration object". 

The dynamical evolution of Transneptune objects can be described, within the first approximation, in 
the framework of the external variant of the restricted elliptic three-body problem, with low-order orbital 
resonances taken into account [9, 10]. For the two-frequency dynamical system considered in this case, a 
resonance relationship holds between its natural (unperturbed) frequency and the frequency of the external 
perturbing force. This gives rise to a certain relationship between the integrals of motion, which, in turn, 
leads to system degeneracy [11, 12]. 
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Even insignificant variations (due to perturbations) in resonance frequencies near the system separatrix, 
where the libration period tends to infinity, may cause significant changes in the perturbation phase, which 
causes local instability and high sensitivity of the system to the initial conditions. However, a significant 
instability may only develop in a dynamical system with a small parameter µ, when influenced significantly 
by non-gravity interaction. effects {for the Sun-Neptune-Tr~nsneptune object system, we haveµ'¥= 5.17 x 
10-•, the Neptune mass m terms of the Sun mass), on times much longer than l/µ {tcr '.O l/µ2 ). For 
µ = µW, the value of tcr is about 10 billion years. Consequently, interpretation of the dynamical evolution 
of Transneptune bodies is correct in the framework of the "partial determinism" concept on the basis of 
the gravitational resonance three-body problem, where the use of rigorously justified asymptotic methods 
allows one to construct an analytical solution that interprets the orbital evolution of specified gravitating 
celestial-mechanics bodies [13, 14]. 

EVOLUTIONARY ORBITS 

Let us consider a model, in which a Transneptune object (P) is a material point, passively gravitating in 
the Sun gravity field (Po). A perturbing body (Neptune, P') is assumed to be moving along an elliptic orbit 
with constant excentricity e', whose value is selected, according to [15, 16], from the range (0.0055, 0.015). 
It is also assumed that P and P' are related by orbital commensurability, so that at the initial moment to 
the inequality 

l{k + l)n - kn'l '.O v'J.ilif 0(1], 

holds, in which n and n' are the average motions of P and P', k, l E N are respectively the multiplicity 
and order of the two-frequency resonance (Fig. la). Since the amplitude of a resonance effect decreases 
with increasing resonance order (17, 18], we henceforth limit ourselves to the cases of low-order resonances 
(l '.O 3). 
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Fig. 1 

Arrangement of resonance zones of various order (!) and multiplicity (k), corresponding to 
"external commensurability" with Neptune (the Transneptune belt) (a) and Uranus (b). 
Effective resonance zones are hatched. 

It shuold be noted that the total span of the resonance effect (L'>r.,) for l = 1, 3, k = T,4 covers 
actually the entire Kuiper belt (L'>K ): L'>re•/ L'>K = 0 [1] (see Fig. 1). Therefore the isolation of only 
resonance Transneptune objects is sufficiently justified. 

We consider the motions that occur in one plane, i.e., we neglect the inclination of the instantaneous 
plane of the orbit of P to the orbital plane of P', and take into account the secular (nonresonance) 
perturbations caused by the gravitational influence of Uranus, Saturn, and Jupiter, assuming their orbits 
to be circular. 
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Let us take the Gauss constant and the major semiaxis (a') of Neptune's orbit to be unity. (We use 
common notation for the orbital elements of Pi priming those that refer to P'.) 

An analytical solution that describes the evolution of all orbital elements of a passively gravitating 
body P (a Transneptune object) in the framework of the restricted elliptic variant of the three-body problem 
with regard to external perturbations from "N-bodies" was obtained in (13, 19] for the case of Lindblad's 
resonances. It was found that in terms of the variables :i:, y related to the orbital elements of P by the 
expressions 

where 

"' = ;l2Z' cos T/, y = ;l2Z' sin 11, 

p=ecosw, 

T/ = (k + l)(M + w) - kM' - arctan-q-, 
p-Po 

q=esinw, [ 
k ] 1/6 

E = k + 1 y'l + µ'*1 , 
I 4-lk 

po = e ;;,,-- , 
'<'2k 

1 (k+l) 1( (k) 1 2 
<T>lk = 2(aD + 2(k + l))L,12 (a), <I>2k = 2 aD + 2k + l)L,12(a) - 2a- Jk,1' 

(1) 

the solution of the original problem is reduced to the integration of an autonomous canonical system of 
equations with one degree of freedom 

whose Hamiltonian is 

dy - -F' 
dT - Xl 

F = (x2 + y2)
2 

+ A(x2 + y2) +Bx. 

(2) 

(3) 

Here r = rot, ro = (3/8)[(k + 1)/k]2 E 8 , B = µw(Ea/ro)<I>2k, a = E4, D = d/da is the differential 

operator, L\~~ is the Laplace coefficient, Jk,l is the Kronecker delta, A = (4/(k + 1)]{ y'Y- E- 2 +Co} is the 
integral of the form 

k+ 1 [( Po) 2 2] y'Y+Co=va--
2

- u- E +v , 

a; 
(3; = -, 

'Y 

(4) 

where u = JTcosw, v = -Jrsinw, r = 2ya(l - ~), m;, and a; (i = 1,3) are respectively the 
masses and orbit major semiaxes of Uranus, Saturn, and Jupiter (in the selected system of units) 

m1 = 4.36 x 10-5, m2 = 2.86 x 10-•, m3 = 9.55 x 10-4, 

a, = 0.639, a2 = 0.316, a3 = 0.172. 

Integration of (2) leads to 

1 
x = 

2
b, (r(r+ w) + p(r-w) - b2], 

i 
y= -

2
b, [p(r+w)-p(r-w)], 

where i 2 = -1, bi= 2B, b2 = (2/3)(4C -A2 ), C + F = 0, and go is the meromorphic Weierstrass function 
with real invariants 

g2 = 3bl - 4b,b,, g3 = 2b1b2b3 - bib· - b~, 

and b3 = -AB, b• = -B2 , and w = iw' is a complex constant defined by 

p(2w'; g,, -g3) = - ~, p'(2w'; g,, -g3) = -2B2. 
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The orbital elements a, e, w of the Transneptune object P, according to [14], are expressed in terms of 
variables ( l) as follows: 

k + l 2 

{ }

2 

a = ./Y + Co + 2E 2 ];, ZJ , 
[ ] 

1/2 

e= t,(Zj+IIj) 2 
, [z2 + II2] 

W = Wo + 0 - arctan Zl +Ill , 

[ 

7rw* 1rT. t] 00 00 
qZlm 1rmw* ?rmTi t 

0 = 41Tn + v't + 4arctan tan -=-cot ~ + 8 LL -- sinh ---=-sin~-
2w 2w l=l m=l m w w 

Here Z; and IT; (j = 1, 2) are the components of vectors Z and II 

{Z} = (zE,yE), {II}= (Pocos0, posin0); wo = w(t = 0), 

v' = -2A + 4((w•; g,, -g3 ) - [p(w) ~~(2w)]
2 

+ 4 ~ ((w) 

+ 2Co{ 4r0 (2 +Co)+ t, :: .6f[2DL\%(.6;) + /1;D2 L\%(13;)] }, 

( is the Weierstrass zeta function, w is .the real period of the p-function, if= q1 = exp[-?r&i/w], when 
the discriminant r of the characteristic equation 4p3 - g2 p - g3 = 0 is greater than or equal to zero, and 
if= i,jiil (i2 = -1), when r < 0. The main periods of the p-function are: 2w1 = 2w, 2wa = i 2w at r ~ 0, 
and 2W1 = W - iw, 2W3 = W + i&i at f < 0 (i.e. W = W1 + W3 at f < 0). 

For the variables Zj (j = 1, 2), as follows from (2) and (3), for !R = 8A3 + 27 B 2 < 0, i.e., "I < "(i, 

where 

1'1 = { E- 2 
- Co - ~(k + l)B2

/
3

} 

2

, 

there are three stationary solutions: zj1l > zj2l > 0, zj3l < 0 (Z~;) = 0, i = T;3). The stationary points 
(zj2l, 0) and (zj3J, 0) are Lyapunov stable ("stable centers"), while (Zjl), 0) is unstable (a "saddle"). For 

!R = 0 ("! = 71 ) zjl,2) = -zj3 l /2 = (1/2)EB213 , and the stationary point (Zj3), 0) is stable (of the "center" 
type), while the points (zjl,2), O) are unstable. In the case !R < 0 ("! > "11) the stationary points (zj1·2), 0) 

will be complex conjugate roots, and the stationary point (zj3l, 0) is a "stable center". 

The stationary solutions (Zj;l, 0), i = 1;3, in terms of the variables p, q correspond to the solution 
families determined by the equations 

For !R ~ 0, the stationary solutions to canonic system (2) on the plane (p = ecosw, q = esinw) are the 

concentric circles centered at Po (fore' = 0.015) with radii lzl;) I, i = T;3 (Fig. 2). Circle 1 describes the 
domain (the set of points) of the unstable stationary solution, while circles 2 and 3 are the domains of stable 
solutions (for !R = O, circles 1 and 2 correspond to unstable stationary solutions; for -y > "(1 the circle of 

radius lzj3l I describes stable stationary solutions). 
From integral ( 4), taking ( l) into account, we have for the stationary values of the major semiaxis and 

excentricity of the orbit of a Transneptune object P 

{ 
k+ l 

a;,tat = ./Y +Co+ -
2
-

p-po 
where cos(S) = ----r";'===;=====;"" 

,,/q2 + (p- Po) 2 

(1) 2 (1) 2 
{ }

1/2 

e;,.at= [z1 ] +2IZ1 1Pocos(S)+p0 , i = 1,3, 
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Stationary solutions on the plane p :::::: ecosw, q esinw for 1l > 0. Circle numbers 
correspond to superscripts of stationary solutions (zl'l, 0), i = 1,3. For i = 1, 2 El= El', 

for i = 3 El = 1T +El', El' = arctan[q I (p - Po)]. The domain of solutions zl2l is hatched, the 

domains of zi1
•
3

) are enclosed between the circles with identical line styles. 

Consequently, 39.95 :S" azstat :S" 47.20 a.u. The stationary values of excentricities are 27r-periodic with 
respect to the variable S, which is a linear function of time. The pericenter argument for the stationary 
orbit of P, as follows from Fig. 2, may (depending on the initial conditions) execute both a libration and a 

circulation motions. In the circulation case (solutions zi1
'
3

)) the excentricity variation range is ~estat :::::: 2Po, 
therefore, according to the table given below, the maximum range of variation ~€stat is realized for the 
resonance multiplicity k = 1. 

k 1 2 3 4 5 

po · 102 4.679 1.308 1.362 1.392 1.410 

Using (1), it is easy to derive the following expression for the pericenter argument variation rate (w) 
for the stationary solution (Zl'l, 0), i = 1,3 

( . ) ( z('l ) 
2 

( ) ~ = -. 1- 1 + ~~) cos(S) , 
W stat e, stat Z1 

which shows that with increasing Neptune orbit excentricity e' the value of Wmax grows, and that, other 
conditions being equal, makes the "convergences" more probable. On the other hand, the maximum value of 
Wstat is reached when the excentricity e is minimal, and this fact decreases the probability of "convergences". 
When the orbit of P approaches exact commensurability, the pericenter argument is "stabilized" (Wstat -+ 0). 

A classification of the phase trajectories of the system in question is given in [14). 

REGIONS OF TRANSNEPTUNE LIBRATION OBJECTS EXISTENCE 

Using (2), (3) and acting in the same way as in [20], it is possible to determine the stability/instability 
domains for the orbital motions of Transneptune objects in the e-a diagram. The corresponding instability 
domains for first-order commensurability and different resonance multiplicities, k = 1,4, are shown in Fig. 3. 
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Fig. 3 

Instability regions in the e-a diagram for first-order resonances of multiplicities k = 1,4 
with µ'l' = 5.17 x 10-5 • 

It is obvious that Transneptune objects can exist for sufficiently long times if their orbital elements e and a 
are located outside the hatched regions in Fig. 3. 

Since the "instability zones" (in Fig. 3) are asymmetric with respect to the points of exact 
commensurability n0 (k) = kn' /(k + 1) (k = 1,4), it can easily be concluded that in the resonance zones 
(other conditions being equal) the existence of libration Transneptune objects (and with high excentricities) 
is more likely for n < no(k) than for n > no(k). 

Thus, in the Kuiper belt, 'fransneptune objects in the vicinities (the resonance effect's span is about 
2,J!i\(i"/(k + !)) of average motions n = 10, 77" (! = k = 1), n = 14, 35" (l = 1, k = 2) may be located outside 
the regions shown hatched in Fig. 3 (the "avoidance zones") clustering near the boundaries of these zones. 

At the same time, as shown in [21], for first.order resonances the shortest distance between P and P' 
corresponds to the following correlation condition: 

S*:::: kw, 

where S' = (k + l)M - k(M' - w) is the "Delauney anomaly" (the critical argument). Therefore, if the 
perihelion longitude (w) of a 'fransneptune object executes slow motions (oscillations} in the vicinity ofw = 
7r, then for odd k the "convergences" on Neptune are possible only for 'fransneptune objects with '~apocentric 
libration" (S* = 7r)j for even k and at perihelion w = 0 they are possible for "pericentrically librating" 
(S' = 0) Transneptune objects. Consequently, in the 2: 1 resonance area among the Transneptune objects 
with high excentricities, one should expect (other conditions being equal) the existence of predominantly 
''apocentrically librating" objects with w =::: 0, while in the 3: 2 commensurability zone, one should expect 
"apocentrically librating" 'fransneptune objects both with w =:: 0 and with w ~ 1t'. It must be noted that, 
according to B. V. Chirikov's stochasticity criterion (the "resonance overlapping criterion"), for l == 1 the 
condition of stochasticity has the form [22] 

(k + 1) ?: 0.4µiV2/7. 

In the case at hand, (k + 1)?: 6.711, therefore fork< 5 resonance zones do not overlap, and the "isolated 
resonance" model, which was used above, is correct. 

Let us now evaluate the probability of "capture into resonance" (and of "escaping from resonance") 
for Transneptune objects. To this end, we determine the probabilities for a trajectory to pass, under the 
influence of various perturbation factors (characterized by independent parameters o = { Oi, 02, ... , On}), 
from one region of the phase space (phase plane) to another. 
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As shown in [23], the probability of trajectory transition (under the influence of perturbation factor o; 
henceforth, without loss of generality, we set 6 = oi) from region i into region j (i,j = 1,3, i =ft j) on the 
phase plane is given by 

. 2 7f 

(-1)1-4 --/'>. + (j - 3)2 
Wii = ----~. =rr~----

(-1)' 2 - /). 
(5) 

where 

l { .P2 } 1/4 

fl = 2 l - sign(l - .P2)t:3 ' (
" + arccos ll - 7/J2I) 

f3 =cos 3 . 

In turn, 7/J1 and .p,, which are the independent parameters, are related to the coefficients of the 
Hamiltonian (3) by 

According to (1)-(4), the coefficient B for a fixed Neptune mass depends only on the resonance 
multiplicity, and the integral A, a function of the system state, may in the general case depend on various 
perturbation factors. For instance, with increasing mi {the giant planet masses) the value of A grows 
proportionally. 

Formula (5) implies, in particular, that when Band A vary similarly (so that s;/A; > 0), a phase 
trajectory located in the "resonance zone" (between the two branches of the separatrix) is more likely to 
pass into the "outer zone" than into the "inner zone" (which immediately surrounds the stable stationary 

point (zj2l,o)): W31 > 1/2, W32 < 1/2 (Fig. 4). 

1.0 

W32 

-n/4 0 

Fig, 4 

Wn 

n/4 

I 
I 

W32 I 
I 

Probabilities W;; of phase trajectory transitions from zone i to zone j (i, j = 1,3, i # j) 
as functions of/). = arctan[L).(,Pi, ,P2)]; 1 - outer, 2 - inner, 3 - phase plane resonance 
zones. 

If A = constJ, B = var (when ¢ 1 = oo), no "capture into resonance" (transition from the inner or 
outer zone into the resonance one) is possible for a Transneptune object. For a fixed resonance multiplicity 
¢1 = O, therefore in this case a Transneptune object is most likely to be captured into the "inner" zone than 
into the "resonance" one. The changes in the sizes (s;) of the corresponding phase plane regions (j = 1,3), 
or the widths of the "stochastic layers", prove to be the order of the perturbation parameter o. If {)A/ {)o > 0 
(B = constJ), then the "inner" and "resonance" zones (s2, s3) grow in size, while the "outer'' zone (s1) 
diminishes; for oA/oo < 0 the values of s; (i = 2, 3) decrease and s1 increases. 

The probabilities for Transneptune objects to be captured into the "resonance" (W13 ) and into the 
"inner zone" (W12) are shown in Fig. 5 for fixed resonance multiplicities (k = 1, 2) as functions of the 
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Probabilities W12 and W13 as functions of log IAI for resonance multiplicities k = 1 (solid 
curve) and k = 2 (dashed curve). 

integral A. These curves imply that a Transneptune object is most likely to be "captured into resonance" 
at 47.9:::; a:::; 50.4 a.u. (k = 1) and 39.3:::; a:::; 40.6 a.u. (k = 2). 

Taking the influence of Uranus's resonance zones into account (see Fig. lb), the existence of libration 
Transneptune objects in the Kuiper belt is only possible in the following ranges of average motions: 6.92"-
7.44", 8.59"-8.77", 10.74"-11.15", 12.19"-12.41", 12.7611-13.07", 14.3111-14.61". 

CONCLUSION 

Orbital resonance effects cause stability of the orbits that have the libration type of motion. In 
resonance zones, libration orbits turn out to be close to the stable stationary solution, which ensures their 
"survival". Despite the secular perturbations from the giant planets Uranus, Saturn, and Jupiter (as well as 
Uranus's "resonance" influence) and gravitational interaction between Transneptune bodies, these bodies 
can be captured by Neptune into an orbital resonance and possessing orbital stability can exist for a long 
time. 

The analytical solution considered in the present study, which interprets in the framework of 
"partial determinism" the dynamical evolution of a Transneptune object bound with Neptune through 
a first-order orbital resonance, can be used as an intermediate orbit. The case of second- and third-order 
commensurability was studied in detail in [24] on the basis of the restricted circular three-body problem. 
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