ЭНЕРГЕТИЧЕСКИЙ СПЕКТР РАДИАЦИОННЫХ ДЕФЕКТОВ В СПЛАВАХ $Pb_{1-x} Sn_x Se$ ($x \leq 0,06$), ОБЛУЧЕННЫХ ЭЛЕКТРОНАМИ

Н. Б. Брандт, Е. П. Скипетров, Б. Б. Ковалев, Л. А. Скипетрова

(кафедра физики низких температур и сверхпроводимости)

Исследованы гальваномагнитные эффекты в сплавах n- и p-Pb_{1-x}Sn_xSe ($x \leq 0,06$), облученных электронами, в интервале давлений $P \leq 18$ кбар. Обнаружены переходы металл-диэлектрик и диэлектрик-металл, индуцированные электронным облучением и гидростатическим сжатием облученных кристаллов и связанные с возникновением глубокого уровня радиационных дефектов E_{t1} вблизи потолка валентной зоны L_6^+ . Построена энергетическая диаграмма движения уровня относительно краев разрешенных зон в точке L зоны Бриллюэна под давлением.

Введение

В настоящее время известно, что облучение $Pb_{1-x} Sn_x Se (0,07 \le x \le 0,34)$ электронами приводит к возникновению в энергетическом спектре сплавов зоны радиационных дефектов E_t , положение которой относительно края зоны L_6^- зависит от состава сплава: $E_t \approx L_6^- + (87-250x)$ мэВ [1–3]. В сплавах с нормальным ($E_g > 0$) спектром зона E_t расположена в зоне проводимости и удаляется от дна зоны L_6^- при уменьшении концентрации олова x.

Для построения модели энергетического спектра облученных электронами сплавов $Pb_{1-x} Sn_x Se$ во всей области существования кубической фазы и получения дополнительных данных об энергетическом положении резонансной зоны радиационных дефектов в сплавах с низким содержанием олова в настоящей работе исследовано влияние облучения электронами и последующего гидростатического сжатия на электрофизические свойства монокристаллических образцов n- и p-Pb_{1-x} Sn_x Se (x = 0; 0,03; 0,06). Предполагалось, что, так как в сплавах с $x \leq 0,06$ незаполненная электронами резонансная зона радиационных дефектов должна находиться высоко в зоне проводимости, ее появление в энергетическом спектре сплавов не окажет существенного влияния на электрофизические параметры образцов при атмосферном давлении. При гидростатическом сжатии облученных кристаллов зона E_t должна двигаться параллельно краю зоны L_6^- и после инверсии зон в точке L попадать в запрещенную зону [2]. В сплавах с $x \leqslant 0,06$ необходимое для этого давление составляет $15 \div 20$ кбар. Поэтому лишь при максимальных достижимых в эксперименте давлениях, когда после инверсии зон в точке L расстояние между резонансной зоной и дном зоны проводимости L_6^+ будет быстро уменьшаться, окажется возможным наблюдение эффектов, связанных с ее присутствием (перераспределение электронов между резонансной зоной и зоной проводимости, переход металл-диэлектрик и т.д.).

1. Образцы. Методика измерений

Образцы с исходными концентрациями электронов или дырок $(0,4\div1,1)\cdot10^{17}$ см $^{-3}$ облучались при

комнатной температуре на линейном импульсном ускорителе ЭЛУ-6 быстрыми электронами с энергией E = 6 МэВ. Суммарные дозы облучения исследованных в работе образцов измерялись с помощью цилиндра Фарадея и составляли $\Phi \leq 5,7 \cdot 10^{17}$ см⁻² ($d\Phi/dt = (1-2) \cdot 10^{12}$ см⁻² · с⁻¹). Во избежание перегрева образцов и частичного отжига радиационных дефектов во время облучения образцы обдувались сжатым воздухом, а их температура контролировалась с помощью термопары медь-константан. Параметры образцов приведены в табл. 1, 2.

У всех образцов до облучения и после многократного облучения измерялись температурные зависимости удельного сопротивления ρ и коэффициента Холла R_H ($B \leq 0.04$ Tл) в интервале температур

Таблица 1

Параметры образцов $Pb_{1-x} Sn_x Se$ при T = 4,2 К

Образец	x	Тип	$ ho \cdot 10^4$ (Ом•см)	$ig R_Hig $ (см $^3/$ Кл)	$N \cdot 10^{-17} \ ({ m cm}^{-3})$	$\mu_H \cdot 10^{-5}$ (cm ² /B·c)
N2	0	n	10,4	97,4	0,64	0,94
N7	0	n	2,7	38,9	1,62	1,44
N8	0	n	7,3	58,9	1,06	0,81
K-22	0,03	p	47,7	158,0	0,40	0,33
K-23	0,03	p	645,0	412,5	0,15	0,06
K-24	0,03	n	648,0	157,7	0,40	0,02
K-1	0,06	p	67,7	130,0	0,48	0,19
K-3	0,06	p	3,2	40,0	1,56	1,23
K-4	0,06	p	3,5	31,8	1,97	0,90

Таблица 2

Параметры образцов $Pb_{1-x}Sn_xSe$, исследованных под давлением, при T=4,2~K

Образец	x	Тип	$\Phi \cdot 10^{-17}$ (см ⁻²)	$n \cdot 10^{-17}$ (cm ⁻³)	<i>р</i> ∙10 ⁴ (Ом∙см)	$egin{array}{c} R_H \ (\mathrm{cm}^3/\mathrm{K\pi}) \end{array}$	$\mu_H \cdot 10^{-5}$ (cm ² /(B·c))
N8	0	n	0	1,06	7,3	58,9	0,81
		n	5,73	0,27	220,0	230,0	0,105
K-22	0,03	p	0	0,40	47,7	158,0	0,33
		n	2,78	0,82	269,0	76,2	0,028

4,2 $\leq T \leq 300$ К, а также осцилляции Шубникова-де Гааза при T = 4,2 К (**B**||<100>, $B \leq 7$ Тл). Аналогичные измерения проведены в условиях гидростатического сжатия у облученных электронами образцов N8 (x = 0, $\Phi = 5,7 \cdot 10^{17}$ см⁻²) и К-22 (x = 0,03, $\Phi = 2,8 \cdot 10^{17}$ см⁻²).

Для получения гидростатических давлений до 18 кбар использовалась камера высокого давления из бериллиевой бронзы, рабочий канал которой заполнялся передающей давление смесью керосин-масло-пентан. Давление измерялось при гелиевых температурах бесконтактным индукционным методом по сдвигу температуры сверхпроводящего перехода оловянной шайбы, помещенной в канал камеры высокого давления [4].

2. Влияние облучения электронами на электрофизические свойства сплавов $Pb_{1-x}Sn_xSe$ ($x \leq 0,06$)

Для сплава с x = 0.06 приведенные выше предположения полностью подтвердились. Под действием электронного облучения электрофизические параметры исследованных образцов изменялись незначительно (рис. 1). Однако в образцах с x = 0 и 0,03 уже при атмосферном давлении были получены результаты, не укладывающиеся в рамки описанной выше модели энергетического спектра облученных электронами сплавов $Pb_{1-x}Sn_xSe$. Установлено, что в образце *p*-типа при облучении электронами удельное сопротивление быстро увеличивается и проходит через максимум, а коэффициент Холла увеличивается и меняет знак на отрицательный (см. рис. 1), что соответствует уменьшению концентрации дырок и *p*-*n*-конверсии при низких температурах. В образцах *n*-типа инверсии знака коэффициента Холла не обнаружено, удельное сопротивление и абсолютная величина коэффициента Холла при T = 4,2 К проходят через минимум при увеличении потока облучения. Таким образом, во всех облученных образцах коэффициент Холла при T = 4,2 К имеет отрицательный знак, но величина холловской подвижности

Рис. 2. Температурные зависимости удельного сопротивления облученного электронами образца N8 (x = 0, $\Phi = 5,7 \cdot 10^{17}$ см⁻²) при давлении P = 2,0 (1); 4,4 (2); 6,0 (3); 6,9 (4); 7,7 (5) и 12,0 кбар (6)

Рис. 3. Температурные зависимости коэффициента Холла облученного электронами образца К-22 (x = 0,03, $\Phi = 2,8 \cdot 10^{17}$ см⁻²) при давлении 0 (1); 2,6 (2); 3,2 (3); 6,2 (4); 6,9 (5), и 14,3 кбар (6)

при гелиевых температурах заметно уменьшается и составляет $\mu_H = (0,4 \div 1,1) \cdot 10^4 \text{ см}^2/(\text{B}\cdot\text{c})$, что по крайней мере на порядок меньше, чем в необлученных кристаллах $\text{Pb}_{1-x} \text{Sn}_x \text{Se}$ (x < 0,15) *n*-типа [5].

Температурные зависимости удельного сопротивления и коэффициента Холла облученных образцов также носят аномальный характер (рис. 2, 3). При увеличении температуры в узком интервале температур (60 ÷ 120 K) абсолютная величина коэффициента Холла быстро уменьшается и происходит смена знака R_H . В этом же температурном интервале на температурных зависимостях сопротивления наблюдаются активационные участки, указывающие на возникновение глубокого уровня E_{t1} в запрещенной зоне сплавов.

3. Гальваномагнитные явления в облученных электронами сплавах $Pb_{1-x} Sn_x Se$ ($x \leq 0,03$) под давлением

Под действием давления удельное сопротивление ρ облученных образцов при T = 4,2 К уменьшается и проходит через минимум в области давлений $P = 9 \div 14$ кбар. Однако если в образце с x = 0,06 зависимость $\rho(P)$ подобна зависимостям в необлученных кристаллах и величина ρ уменьшается под действием давления не более чем вдвое, то в образцах с x = 0 и 0,03 это уменьшение составляет уже примерно два порядка (см. рис. 2). Такое значительное изменение удельного сопротивления не может быть обусловлено только увеличением подвижности носителей заряда при переходе сплавов в бесщелевое состояние и указывает на изменение концентрации носителей заряда под действием давления.

При исследовании коэффициента Холла в облученных образцах обнаружено, что в сплаве с x = 0,06 величина R_H при низких температурах практически не зависит от давления. Это указывает на неизменность концентрации носителей заряда в образце, что характерно для нелегированных и необлученных сплавов $Pb_{1-x}Sn_xSe$. В то же время в образцах с x = 0 и 0,03 при увеличении давления абсолютная величина коэффициента Холла резко уменьшается, а затем происходит инверсия знака R_H (рис. 3). В области максимальных давлений коэффициент Холла выходит на насыщение и имеет положительный знак.

На температурных зависимостях коэффициента Холла точка инверсии знака R_H под действием давления сдвигается в сторону низких температур, а наклон активационных участков на зависимостях $\ln \rho(1/T)$ монотонно уменьшается (см. рис. 2, 3). Для образца N8 (x = 0, $\Phi = 5.7 \cdot 10^{17}$ см $^{-2}$) энергия активации глубокого уровня, определенная по углу наклона зависимостей $\ln \rho(1/T)$, при P=0 составляет $\Delta E_{t1}pprox 35$ мэВ и монотонно уменьшается под действием давления со скоростью $d(\Delta E_{t1})/dP pprox -4,5$ мэВ/кбар (рис. 4). При давлении P_k ($P_k \approx 8$ кбар для PbSe и $P_k \approx 3$ кбар для сплава $Pb_{1-x} Sn_x Se \ (x = 0,03))$ энергия активации уровня обращается в нуль и происходит инверсия знака R_H при T = 4,2 К. И наконец, в области давлений $P > P_k$ зависимости $\rho(T)$, $R_H(T)$ приобретают «металлический» характер, типичный для нелегированных сплавов $Pb_{1-x} Sn_x Se$.

Необычный для нелегированных сплавов $Pb_{1-x} Sn_x Se$ вид имеют также зависимости холловской подвижности $\mu_H = R_H/\rho$ облученных электронами образцов от давления. В области низких давлений ($P < P_k$) подвижности электронов имеют довольно низкие для сплавов $Pb_{1-x} Sn_x Se$ значения ($10^3 \div 10^4 \text{ см}^2/(B \cdot \text{c})$). Однако после инверсии типа проводимости (в «металлической» фазе)

Рис. 4. Зависимость энергии активации глубокого уровня E_{t1} от давления для образца N8 (x=0), облученного электронами ($\Phi=5,7\cdot10^{17}~{
m cm}^{-2}$)

подвижность носителей заряда резко увеличивается более чем на порядок и достигает значений, типичных для нелегированных сплавов $Pb_{1-x} Sn_x Se$. При этом у всех исследованных образцов появляются отчетливые осцилляции магнетосопротивления в квантующих магнитных полях. В узком интервале давлений амплитуда и частота шубниковских осцилляций резко возрастают, а концентрации свободных дырок, рассчитанные по периодам осцилляций $\Delta_{100}(1/B)$, с точностью $\pm 10\%$ совпадают со значениями, рассчитанными по величинам коэффициента Холла R_H , и с ростом давления выходят на насыщение.

4. Перестройка энергетического спектра сплавов $Pb_{1-x} \operatorname{Sn}_x \operatorname{Se}(x \leq 0,06)$, облученных электронами, под давлением

Анализ полученных экспериментальных данных позволяет предположить, что облучение электронами приводит к возникновению в энергетическом спектре сплавов глубокого уровня (зоны локализованных состояний) E_{t1}, расположенного над потолком валентной зоны L_6^+ (рис. 5). Уровень E_{t1} частично заполнен электронами и обладает донорно-акцепторными свойствами. Поэтому при увеличении дозы облучения (при увеличении плотности состояний в зоне E_{t1}) в образце *n*-типа происходит уменьшение концентрации электронов в результате перетекания электронов из зоны проводимости на уровень E_{t1} , а в образце *p*-типа — уменьшение концентрации дырок в результате перетекания электронов с уровня E_{t1} в валентную зону. При достаточно высоких дозах облучения независимо от исходного типа проводимости образца происходит переход в диэлектрическое состояние, в котором при низких температурах валентная зона целиком заполнена электронами, зона проводимости свободна от электронов, а уровень E_{t1} частично заполнен электронами. Степень

Рис. 5. Перестройка энергетического спектра PbSe, облученного электронами, под действием давления

заполнения уровня E_{t1} в диэлектрическом состоянии зависит, очевидно, от параметров исходного кристалла (концентрации носителей заряда, начальной степени заполнения радиационного уровня E_{t1}) и дозы облучения.

Под действием давления середина зоны E_{t1} приближается к валентной зоне и пересекает потолок валентной зоны L_6^- при $P \approx P_k$. При этом энергия ионизации ΔE_{t1} обращается в нуль и происходит n-p-конверсия при T = 4,2 К, связанная с переходом диэлектрик-металл и увеличением концентрации свободных дырок в результате перераспределения носителей заряда между валентной зоной и зоной локализованных состояний. В области максимальных давлений зона E_{t1} целиком заполнена электронами и находится в валентной зоне ниже уровня Ферми в исследованных образцах.

В рамках этой модели при атмосферном давлении и давлениях $P < P_k$ положительный знак R_H на температурных зависимостях коэффициента Холла связан, очевидно, с термической генерацией электронов из валентной зоны на уровень E_{t1} . Отрицательный знак R_H в диэлектрической фазе при низких температурах, с нашей точки зрения, не может быть

обусловлен существованием свободных электронов в объеме образцов, так как подвижность носителей заряда в облученных образцах оказалась значительно ниже, чем в необлученных, а также в подвергнутых гидростатическому сжатию облученных образцах. Поэтому мы считаем, что в диэлектрической фазе при низких температурах основным механизмом проводимости скорее всего является поверхностная проводимость электронного типа [6].

Заключение

Таким образом, полученные экспериментальные результаты позволяют заключить, что при электронном облучении в энергетическом спектре сплавов $Pb_{1-x}Sn_xSe$ кроме широкой зоны радиационных дефектов E_t возникает также глубокий радиационный уровень (зона) E_{t1} , энергетическое положение которого относительно краев энергетических зон в L зависит от состава сплава и давления. Облучение электронами и последующее гидростатическое сжатие облученных сплавов с $x \leq 0,03$ индуцируют переходы металл-диэлектрик и диэлектрик-металл в результате перераспределения электронов между зоной E_{t1} и разрешенными зонами в точке L зоны Бриллюэна.

Авторы благодарны А. М. Мусалитину (Московский государственный институт стали и сплавов) за помощь в облучении исследованных образцов быстрыми электронами.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (гранты 96-02-18325 и 96-15-96500).

Литература

- Skipetrov E.P., Dubkov V.P., Kovalev B.B. // Semicond. Sci. and Technol. 1989. 4, No. 9. P. 831.
- Ковалев Б.Б., Скипетров Е.П. // ФТП. 1990. 24, № 8. С. 1379.
- 3. Скипетров Е.П., Ковалев Б.Б. // Неорг. матер. 1992. 28, № 12. С. 2322.
- Jennings L.D., Swenson C.A. // Phys. Rev. 1958. 112, No. 1. P. 31.
- 5. Брандт Н.Б., Пономарев Я.Г., Скипетров Е.П. // ФТТ. 1987. **29**, № 11. С. 3233.
- Скипетров Е.П., Зверева Е.А., Ковалев Б.Б., Скипетрова Л.А. // ФТП. 1998. 32, № 6. С. 663.

Поступила в редакцию 11.02.98